Reference format: | DONG S S, LIU L, FAN Y Y, et al. Overview of the channel characteristics of V2X[J]. Chinese journal of radio science,2021,36(3):349-367. (in Chinese) DOI: 10.12265/j.cjors.2020199 |
[1] |
WANG C X, CHENG X, LAURENSON D I. vehicle-to-vehicle channel modeling and measurements: recent advances and future challenges[J]. IEEE communications magazine,2009,47(11):96-103. doi: 10.1109/MCOM.2009.5307472
|
[2] |
刘留, 陶成, 陈后金, 等. 高速铁路无线传播信道测量与建模综述[J]. 通信学报,2014,35(1):115-127. doi: 10.3969/j.issn.1000-436x.2014.01.014
LIU L, TAO C, CHEN H J, et al. Survey of wireless channel measurement and characterization for high-speed railway scenarios[J]. Journal on communications,2014,35(1):115-127. (in Chinese) doi: 10.3969/j.issn.1000-436x.2014.01.014
|
[3] |
MATOLAK D W. Modeling the vehicle-to-vehicle propagation channel: a review[J]. Radio science,2015,49(9-10):721-736.
|
[4] |
VIRIYASITAVAT W, BOBAN M, TSAI H M, et al. Vehicular communications: survey and challenges of channel and propagation models[J]. IEEE vehicular technology magazine,2015,10(2):55-66. doi: 10.1109/MVT.2015.2410341
|
[5] |
MECKLENBRAUKER C F, MOLISCH A F, KAREDAL J, et al. Vehicular channel characterization and its implications for wireless system design and performance[J]. Proceedings of the IEEE,2011,99(7):1189-1212. doi: 10.1109/JPROC.2010.2101990
|
[6] |
MOLISCH A F, TUFVESSON F, KAREDAL J, et al. A survey on vehicle-to-vehicle propagation channels[J]. IEEE wireless communications,2009,16(6):12-22. doi: 10.1109/MWC.2009.5361174
|
[7] |
工信部. 车联网(智能网联汽车)直连通信使用5 905~5 925 MHz频段管理规定(暂行)[EB/OL]. (2018-11-13)[2020-09-09]. https://www.miit.gov.cn/jgsj/wgj/wjfb/art/2020/art_9b82efd0ac3b48ca839320be7d9f3343.html.
|
[8] |
KYOSTI P, MENINILA J, HENTILA L, et al. IST-4-027756 WINNER II D1.1. 2 V1.1, WINNER II channel models[R/OL]. (2007-09-03)[2020-09-09]. http://www.ist-winner.org.
|
[9] |
刘鹏宇. 智能交通系统中的车对车宽带无线信道建模[D]. 北京: 北京交通大学, 2014.
LIU P Y. Vehicle-to-vehicle wideband wireless channel modeling in intelligent transportation systems[D]. Beijing: Beijing Jiaotong University, 2014. (in Chinese)
|
[10] |
ACOSTA-MARUM G, INGRAM M A. Six time- and frequency-selective empirical channel models for vehicular wireless LANs[J]. IEEE vehicular technology magazine,2007,2(4):4-11. doi: 10.1109/MVT.2008.917435
|
[11] |
张鹏涛. 车联网车车信道仿真模型概述[J]. 通讯世界,2016(5):17-18. doi: 10.3969/j.issn.1006-4222.2016.05.012
ZHANG P T. Overview of the simulation model of the V2V channel of the vehicle network[J]. Telecom World,2016(5):17-18. (in Chinese) doi: 10.3969/j.issn.1006-4222.2016.05.012
|
[12] |
CHEN W, HE Z Y, YAO T. A street reference model of MIMO vehicle-to-vehicle fading channel[C]//IEEE Conference on Industrial Electronics & Applications, 2008: 275-278.
|
[13] |
HE Z Y, CHEN W, ZHOU W, et al. Modelling of MIMO vehicle-to-vehicle fading channels in T-junction scattering environments[C]//European Conference on Antennas & Propagation. IEEE, 2009: 652-656.
|
[14] |
REICHARDT L, FUGEN T, ZWICK T. Influence of antennas placement on car to car communications channel[C]// The 3rd European Conference on Antennas and Propagation, IEEE, 2009: 630-634.
|
[15] |
WANG W, GUAN K, HE D, et al. Channel characterization for vehicle-to-vehicle communication in urban sloped terrain[C]// International Applied Computational Electromagnetics Society Symposium-China (ACES), 2018: 1-2.
|
[16] |
ABBAS T, KAREDAL J, TUFVESSON F. Measurement-based analysis: the effect of complementary antennas and diversity on vehicle-to-vehicle communication[J]. IEEE Antennas and wireless propagation letters,2013,12:309-312. doi: 10.1109/LAWP.2013.2250243
|
[17] |
REICHARDT L, MAHLER T, SCHIPPER T, et al. Influence of single and multiple antenna placements on the capacity of C2C communication systems[C]// IEEE Microwave Conference, 2013: 720-723.
|
[18] |
KLEMP O. Performance considerations for automotive antenna equipment in vehicle-to-vehicle communications[C]//URSI International Symposium on Electromagnetic Theory. IEEE, 2010: 934-937.
|
[19] |
CHELLI A, PATZOLD M. A non-stationary MIMO vehicle-to-vehicle channel model derived from the geometrical street model[C]// IEEE Vehicular Technology Conference, 2011: 1-6.
|
[20] |
LIANG X L, ZHAO X W, LI S, et al. A non-stationary geometry-based scattering model for street vehicle-to-vehicle wideband MIMO channels[J]. Wireless personal communications,2016,90(1):1-14. doi: 10.1007/s11277-016-3599-8
|
[21] |
LI W, CHEN X, ZHU Q, et al. A novel segment-based model for non-stationary vehicle-to-vehicle channels with velocity variations[J]. IEEE access,2019,99:133442-133451.
|
[22] |
DU D, ZENG X, JIAN X, et al. 3-D V2V MIMO channel modeling indifferent roadway scenarios with moving scatterers[J]. Progress in electromagnetics research M,2018,64:43-54. doi: 10.2528/PIERM17101901
|
[23] |
YANG Y, ZHU Q, LI W, et al. A general 3D non-stationary twin-cluster model for vehicle-to-vehicle MIMO channels[C]//The 10th International Conference on Wireless Communications and Signal Processing (WCSP), 2018: 1-6.
|
[24] |
BIAN J, WANG C X, HUANG J, et al. A 3D wideband non-stationary multi-mobility model for vehicle-to-vehicle MIMO channels[J]. IEEE access,2019,PP(99):32562-32577.
|
[25] |
ZHU Q, YANGY, WANG C X, et al. Spatial correlations of a 3D non-stationary MIMO channel model with 3D antenna arrays and 3D arbitrary trajectories[J]. IEEE wireless communications letters,2018:1-4.
|
[26] |
SEN I, MATOLAK D W. Vehicle–vehicle channel models for the 5-GHz band[J]. IEEE transactions on intelligent transportation systems,2008,9(2):235-245. doi: 10.1109/TITS.2008.922881
|
[27] |
WU Q, MATOLAK D W, SEN I. 5-GHz-band vehicle-to-vehicle channels: models for multiple values of channel bandwidth[J]. IEEE Transactions on vehicular technology,2010,59(5):2620-2625. doi: 10.1109/TVT.2010.2043455
|
[28] |
JIANG H, YING W, ZHOU J, et al. A 3D wideband two-cluster channel model for massive MIMO vehicle-to-vehicle communications in semi-ellipsoid environments[J]. IEEE access,2020,8:23594-23600. doi: 10.1109/ACCESS.2020.2970190
|
[29] |
周文轩, 周杰, 常代娜, 等. 5G隧道环境非平稳宽带双散射簇V2V信道建模[J/OL]. 计算机应用研究: 1-5. (2020-09-01)[2020-09-09]. https://www.arocmag.com/article/02-2021-02-051.html.
ZHOU W X, ZHOU J, CHANG D N, et al. 3d non-stationary wideband twin-cluster channel model for 5g tunnel communication environments Application[J/OL]. Research of Computers: 1-5. (2020-09-01)[2020-09-09]. https://www.arocmag.com/article/02-2021-02-051.html.
|
[30] |
HE R S, RENAUDIN O, KOLMONEN V M, et al. A dynamic wideband directional channel model for vehicle-to-vehicle communications[J]. IEEE transactions on industrial electronics,2015,62(12):7870-7882. doi: 10.1109/TIE.2015.2459376
|
[31] |
MATZ G. On non-WSSUS wireless fading channels[J]. IEEE transactions on wireless communications,2005,4(5):2465-2478. doi: 10.1109/TWC.2005.853905
|
[32] |
HERDIN M, CZINK N, OZCELIK H, et al. Correlation matrix distance, a meaningful measure for evaluation of non-stationary MIMO channels[C]//Vehicular Technology Conference. IEEE, 2005: 136-140.
|
[33] |
LIU L, TAO C, SUN R, et al. Non-stationary channel characterization for high-speed railway under viaduct scenarios[J]. Chinese science bulletin,2014,59(35):4988-4998. doi: 10.1007/s11434-014-0606-x
|
[34] |
ALEXANDER P, THOMAS Z, LAURA B, et al. Non-WSSUS vehicular channel characterization in highway and urban scenarios at 5.2 GHz using the local scattering function[C]// International ITG Workshop on Smart Antennas (WSA 2008), 2008: 9-15.
|
[35] |
LAURA B, ROMA A, PAIER A, et al. In-tunnel vehicular radio channel characterization[C]// Proceedings of the 73rd IEEE Vehicular Technology Conference. Budapest, 15-18 May, 2011: 1-5.
|
[36] |
RENAUDIN O, KOLMONEN V M, VAINIKAINEN P, et al. Non-stationary narrowband MIMO inter-vehicle channel characterization in the 5-GHz band[J]. IEEE transactions on vehicular technology,2010,59(4):2007-2015. doi: 10.1109/TVT.2010.2040851
|
[37] |
HE R S, RENAUDIN O, KOLMONEN V M, et al. vehicle-to-vehicle radio channel characterization in crossroad scenarios[J]. IEEE transactions on vehicular technology,2016,65(8):5850-5861. doi: 10.1109/TVT.2015.2473687
|
[38] |
ISPAS A, SCHNEIDER C, ASCHEID G, et al. Analysis of the local quasi-stationarity of measured dual-polarized MIMO channels[J]. IEEE transactions on vehicular technology,2015,64(8):3481-3493. doi: 10.1109/TVT.2014.2358942
|
[39] |
PATZOLD M, GUTIERREZ C A, YOUSSEF N. On the consistency of non-stationary multipath fading channels with respect to the average doppler shift and the doppler spread[C]//Wireless Communications & Networking Conference, IEEE, 2017: 1-6.
|
[40] |
DAHECH W, MATTHIAS P, CARLOS A G, et al. A non-stationary mobile-to-mobile channel model allowing for velocity and trajectory variations of the mobile stations[J]. IEEE transactions on wireless communications,2017,16(3):1987-2000. doi: 10.1109/TWC.2017.2659723
|
[41] |
杨颖, 朱秋明, 陈小敏, 等. 三维移动-移动场景非平稳MIMO信道空时相关性[J]. 微波学报,2018,34(1):36-41.
YANG Y, ZHU Q M, CHEN X M, et al. Spatial-temporal correlation of non-stationary MIMO channels under 3D mobile-mobile scenario[J]. Journal of microwaves,2018,34(1):36-41. (in Chinese)
|
[42] |
ZHU Q, YANG Y, CHEN X, et al. A novel 3D non-stationary vehicle-to-vehicle channel model and its spatial-temporal correlation properties[J]. IEEE access,2018,6:43633-43643. doi: 10.1109/ACCESS.2018.2859782
|
[43] |
JIANG K L, CHEN X M, ZHU Q M, et al. A novel simulation model for nonstationary rice fading channels[J]. Wireless communications & mobile computing,2018:1-9.
|
[44] |
LI W D, ZHU M Q, WANG C X, et al. A practical non-stationary channel model for vehicle-to-vehicle MIMO communications[C]//IEEE wireless communication networking conference, 2020: 1-6.
|
[45] |
JIANG H, ZHANG Z, WU L, et al. A non-stationary geometry-based scattering vehicle-to-vehicle MIMO channel model[J]. IEEE communications letters,2018:1510-1513.
|
[46] |
JIANG H, ZHANG Z, WU L, et al. Novel 3D irregular-shaped geometry-based channel modeling for semi-ellipsoid vehicle-to-vehicle scattering environments[J]. IEEE wireless communications letters,2018,7(5):836-839. doi: 10.1109/LWC.2018.2829892
|
[47] |
CHELLI A, MATTHIAS P. A non-stationary MIMO vehicle-to-vehicle channel model based on the geometrical T-junction model[C]// International Conference on Wireless Communications & Signal Processing, 2009: 1-5.
|
[48] |
GAN M, STEINBOCK G, XU Z, et al. A hybrid ray and graph model for simulating vehicle-to-vehicle channels in tunnels[J]. IEEE transactions on vehicular technology,2018:7955-7968.
|
[49] |
HE R S, SCHNEIDER C, AI B, et al. Propagation channels of 5G millimeter-wave vehicle-to-vehicle communications: recent advances and future challenges[J]. IEEE vehicular technology magazine,2020,15(1):16-26. doi: 10.1109/MVT.2019.2928898
|
[50] |
MANUEL G S, MONICA P T, EDGAR L C. Millimeter wave radio channel characterization for 5G vehicle-to-vehicle communications[J]. Measurement,2017,95:223-229. doi: 10.1016/j.measurement.2016.10.018
|
[51] |
BLUMENSTEIN J, PROKES A, VYCHODIL J. et al. Vehicle-to-vehicle millimeter-wave channel measurements at 56-64 GHz[C]// IEEE 90th Vehicular Technology Conference (VTC2019-Fall), 2019: 1-5.
|
[52] |
VERDONE R. Time and frequency selectivity effects in vehicle-to-vehicle communications at 60 GHz[C]// Vehicular Technology Conference, 1994: 1780-1784.
|
[53] |
MORIMATSU A, KAJIWARA A. The attenuation of radio waves caused by body frame and glass of sedan vehicle in the communications of microwave/millimeter-wave band to be applied to 5G[C] // IEEE Sensors Applications Symposium (SAS), Seoul, 2018: 1-4.
|
[54] |
YAMAMOTO A, OGAWA K, HORIMAYSU T, et al. Path loss prediction models for intervehicle communication at 60 GHz[J]. IEEE transactions on vehicular technology,2008,57(1):65-78. doi: 10.1109/TVT.2007.901890
|
[55] |
BOBAN M, DUPLEICH D, IQBAL N, et al. Multi-band vehicle-to-vehicle channel characterization in the presence of vehicle blockage[J]. IEEE access,2019:9724-9735.
|
[56] |
HE R S, AI B, STUBER G L, et al. A cluster based geometrical model for millimeter wave mobile-to-mobile channels[C]// IEEE/CIC International Conference on Communications in China (ICCC), 2017: 1-6.
|
[57] |
HE R S, AI B, STUBER G L, et al. Geometrical based modeling for millimeter wave MIMO mobile-to-mobile channels[J]. IEEE transactions on vehicular technology,2017:2848-2863.
|
[58] |
WADA T, MAEDA M, OKADA M, et al. Theoretical analysis of propagation characteristics in millimeter waves inter-vehicle communication system[C]//IEEE International Symposium on Personal, 1998: 869-873.
|
[59] |
TAKAHASHI S, KATO A, SATO A, et al. Distance dependence of path loss for millimeter wave inter-vehicle communications[C]//The 58th IEEE Vehicular Technology Conference, 2004: 26-30.
|
[60] |
王琦. 空时非平稳无线信道特性分析与建模方法研究[D]. 北京: 北京交通大学, 2018.
WANG Q. Research on characteristics and modeling approaches of spatial-temporal non-stationary wireless channels[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese)
|
[61] |
II J S D, LINNARTZ J P M G. Vehicle to vehicle RF propagation measurements[C]// Proceedings of the 28th Asilomar Conference on Signals, Systems and Computers. IEEE Computer Society, 1994: 470-474.
|
[62] |
TURKKA J, RENFORS M. Path loss measurements for a non-line-of-sight mobile-to-mobile environment[C]// Telecommunications, the 8th International Conference on ITS. Phuket, 2008: 274-278.
|
[63] |
KAREDAL J, CZINK N, PAIER A, et al. Path loss modeling for vehicle-to-vehicle communications[J]. IEEE transactions on vehicular technology,2011,60(1):323-328. doi: 10.1109/TVT.2010.2094632
|
[64] |
KUNISCH J, PAMP J. Wideband car-to-car radio channel measurements and model at 5.9 GHz[C]//2008 IEEE 68th Vehicular Technology Conference. Calgary, 2008: 231-235.
|
[65] |
CHENG L, HENTY B E, STANCIL D D, et al. Mobile Vehicle-to-vehicle narrow-band channel measurement and characterization of the 5.9 GHz dedicated short range communication (DSRC) frequency band[J]. IEEE journal on selected areas in communications,2007,25(8):1501-1516. doi: 10.1109/JSAC.2007.071002
|
[66] |
CHENG L, HENTY B E, BAI F, et al. Highway and rural propagation channel modeling for vehicle-to-vehicle communications at 5.9 GHz[C]// IEEE Antennas and Propagation Society International Symposium, 2008: 476-479.
|
[67] |
ABBAS T, SJOBERG K, KAREDAL J, et al. A MEASUREMENT based shadow fading model for vehicle-to-vehicle network simulations[J]. International journal of antennas and propagation,2015:1-12.
|
[68] |
MATOLAK D W, SUN R Y, LIU P Y. Parking garage channel characteristics at 5 GHz for V2V applications[C]// IEEE 78th Vehicular Technology Conference (VTC Fall). Las Vegas, 2013: 1-5.
|
[69] |
SUN R Y, MATOLAK D W, LIU P Y. 5-GHz V2V channel characteristics for parking garages[J]. IEEE transactions on vehicular technology,2017:3538-3547.
|
[70] |
WANG H, YIN X, CAI X, et al. Fading characterization of 73 GHz millimeter-wave V2V channel based on real measurements[C]//International Workshop on Communication Technologies for Vehicles, 2018: 159-168.
|
[71] |
PARK J J, LEE J, LIANG J, et al. Millimeter wave vehicular blockage characteristics based on 28 GHz measurements[C]//2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), 2017: 1-6.
|
[72] |
CHENG L, SARAF A. Simulating Doppler components in the vehicle-to-vehicle communication channel[C]//Proceedings of the IEEE Conference on Radio and Wireless Symposium. New Orleans, 2010: 637-640.
|
[73] |
MEIRELES R, BOBAN M, STEENKISTE P, et al. Experimental study on the impact of vehicular obstructions in VANETs[C]//Proceedings of the Vehicular Networking Conference. Jersey City, 2010: 338-345.
|
[74] |
BAS C U, WANG R, SANGODOYIN S, et al. Dynamic double directional propagation channel measurements at 28 GHz[C]// IEE 87th Vehicular Technology Conference. IEEE, 2018: 1-6.
|
[75] |
OKVIST P, SEIFI N, HALVARSSON B, et al. 15 GHz street-level blocking characteristics assessed with 5G radio access prototype[C]// Vehicular Technology Conference, IEEE, 2016: 1-5.
|
[76] |
SATO K, FUJISE M, TACHITA R, et al. Propagation in ROF road-vehicle communication system using millimeter wave[C]//IEEE International Vehicle Electronics Conference, 2001: 131-135.
|
[77] |
杨大成. 移动传播环境[M]. 北京: 机械工业出版社, 2003.
YANG D C. Mobile communication environment[M]. Beijing: Machinery Industry Press, 2003. (in Chinese)
|
[78] |
MATOLAK D W, SUN R Y, LIU P Y. V2V channel characteristics and models for 5 GHz parking garage channels[C]//The 9th European Conference on Antennas and Propagation (EuCAP), IEEE, 2015: 1-4.
|
[79] |
PASCHALIDIS P C, WISOTZKIi M, KORTKE A, et al. A wideband channel sounder for car-to-car radio channel measurements at 5.7 GHz and results for an urban scenario[C]//IEEE Vehicular Technology Conference, IEEE, 2008: 1-5.
|
[80] |
RENAUDIN O, KOLMONEN V, VAINIKAINEN P, et al. Wideband MIMO car-to-car radio channel measurements at 5.3 GHz[C]//IEEE Vehicular Technology Conference, 2008: 1-5.
|
[81] |
LIU P Y, AI B, MATOLAK D W, et al. 5-GHz vehicle-to-vehicle channel characterization for example overpass channels[J]. IEEE transactions on vehicular technology,2016,65(8):5862-5873. doi: 10.1109/TVT.2015.2476382
|
[82] |
3GPP TR 36.843 V12.0. 1. Study on LTE Device to Device Proximity[S/OL]. (2014-03-27)[2020-09-09]. https://www.3gpp.org/ftp/Specs/archive/36_series/36.843.
|
[83] |
MAURER J, FUGEN T, WIESBECK W. Narrow-band measurement and analysis of the inter-vehicle transmission channel at 5.2 GHz[C]//IEEE Vehicular Technology Conference, 2002: 1274-1278.
|
[84] |
CHENG X, WANG C X, LAURENSON D I. A geometry-based stochastic model for wideband MIMO mobile-to-mobile channels[C]// Global Telecommunications Conference, IEEE, 2009: 1-6.
|
[85] |
SCHACK M, NUCKELT J, GEISE R, et al. Comparison of path loss measurements and predictions at urban crossroads for C2C communications[C]//European Conference on Antennas & Propagation, 2011: 2896-2900.
|
[86] |
PAIER A, KAREDAL J, CZINK N, et al. Car-to-car radio channel measurements at 5 GHz: Pathloss, power-delay profile, and delay-Doppler spectrum[C]//International Symposium on Wireless Communication Systems, IEEE, 2007: 224-228.
|
[87] |
ABBAS T, KAREDAL J, TUTVESSON F, et al. Directional analysis of vehicle-to-vehicle propagation channels[C]// IEEE 73rd Vehicular Technology Conference (VTC Spring), 2011: 1-5.
|
[88] |
何睿斯. 车载网络复杂场景下无线信道测量与建模研究[D]. 北京: 北京交通大学, 2015.
HE R S. Research on wireless channel measurement and modeling in complex scenarios of vehicular networks[D]. Beijing Jiaotong University, 2015. (in Chinese)
|
[89] |
王少石. 面向车联网通信的3.5 GHz宽带无线信道测量与仿真研究[D]. 北京: 北京交通大学, 2019.
WANG S S. Measurement and simulation research of broadband wireless channel for vehicular communication at 3.5 GHz[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)
|
[90] |
ACOSTA G, INGRAM M A. Model development for the wideband expressway vehicle-to-vehicle 2.4 GHz channel[C]// IEEE Wireless Communications and Networking Conference (WCNC), 2006: 1283-1288.
|
[91] |
LI Y, AI B, CHENG X, et al. A TDL based non-WSSUS vehicle-to-vehicle channel model[J]. International journal of antennas and propagation,2013:1-8.
|
[92] |
朱春华, 姚金魁, 杨铁军. 无线信道建模方法综述[J]. 无线互联科技,2015(16):26-27. doi: 10.3969/j.issn.1672-6944.2015.16.010
ZHU C H, YAO J K, YANG T J. Review on wireless channel modeling method[J]. Wireless internet technology,2015(16):26-27. (in Chinese) doi: 10.3969/j.issn.1672-6944.2015.16.010
|
[93] |
MAURER J, SCHAFER T M, WIESBECK W. A realistic description of the environment for inter-vehicle wave propagation modelling[C]// IEEE Vehicular Technology Conference, 2001: 1437-1441.
|
[94] |
MAURER J, FUGEN T, SCHAFER T M, et al. A new inter-vehicle communications (IVC) channel model[C]// IEEE Vehicular Technology Conference, 2004: 9-13.
|
[95] |
PASCHALIDIS P, NUCKELT J, MAHLER K, et al. Investigation of MPC correlation and angular characteristics in the vehicular urban intersection channel using channel sounding and ray tracing[J]. IEEE transactions on vehicular technology,2016,65(8):5874-5886. doi: 10.1109/TVT.2015.2476512
|
[96] |
AKKI A S, HABER F. A statistical model of mobile-to-mobile land communication channel[J]. IEEE transactions on vehicular technology,1986,35(1):2-7.
|
[97] |
PATEL C S, STUBER S L, PRATT T G. Simulation of Rayleigh-faded mobile-to-mobile communication channels[J]. IEEE transactions on communications,2005,53(11):1876-1884. doi: 10.1109/TCOMM.2005.858678
|
[98] |
WANG L C, CHENG Y H. A statistical mobile-to-mobile Rician fading channel model[C]// IEEE Vehicular Technology Conference, 2005: 63-67.
|
[99] |
WANG L C, LIU W C, CHENG Y H. Statistical analysis of a mobile-to-mobile rician fading channel model[J]. IEEE transactions on vehicular technology,2009,58(1):32-38. doi: 10.1109/TVT.2008.924999
|
[100] |
ZAJJIC A G, STUBBER G L. Space-time correlated mobile-to-mobile channels: modelling and simulation[J]. IEEE transactions on vehicular technology,2008,57(2):715-726. doi: 10.1109/TVT.2007.905591
|
[101] |
CHENG X, WANG C X, LAURENSON D I, et al. An adaptive geometry-based stochastic model for non-isotropic MIMO mobile-to-mobile channels[J]. IEEE transactions on wireless communications,2009,8(9):4824-4835. doi: 10.1109/TWC.2009.081560
|
[102] |
ZAJJIC A G, STUBBER G L. Three-dimensional modeling and simulation of wideband MIMO mobile-to-mobile channels[J]. IEEE transactions on wireless communications,2009,8(3):1260-1275. doi: 10.1109/TWC.2009.070379
|
[103] |
CHENG X, WANG C X, YUAN Y, et al. A novel 3D regular-shaped geometry-based stochastic model for non-isotropic MIMO mobile-to-mobile channels[C]// Vehicular Technology Conference Fall. IEEE, 2010: 1-5.
|
[104] |
YUAN Y, WANG C X, HE Y, et al. 3D wideband non-stationary geometry-based stochastic models for non-isotropic MIMO vehicle-to-vehicle channels[J]. IEEE transactions on wireless communications,2015,14(12):6883-6895. doi: 10.1109/TWC.2015.2461679
|
[105] |
KAREDAL J, TUFVESSON F, CZINK N, et al. A geometry-based stochastic MIMO model for vehicle-to-vehicle communications[J]. IEEE transactions on wireless communications,2009,8(7):3646-3657. doi: 10.1109/TWC.2009.080753
|
[106] |
RENAUDIN O, KOLMONEN V M, VAINIKAINEN P, et al. Wideband measurement-based modeling of inter-vehicle channels in the 5-GHz band[J]. IEEE transactions on vehicular technology,2013,62(8):3531-3540. doi: 10.1109/TVT.2013.2257905
|
[107] |
CHELLI A, PATZOLD M. The impact of fixed and moving scatterers on the statistics of MIMO vehicle-to-vehicle channels[C]//IEEE vehicular technology conference, 2009: 1-6.
|
[108] |
BORHANI A, PATZOLD M U. Modeling of vehicle-to-vehicle channels in the presence of moving scatterers[C]// Vehicular Technology Conference, IEEE, 2012: 1-5.
|
[1] | ZHENG Yi, WANG Chengxiang, FENG Rui, HUANG Jie. Channel measurements and capacity optimization evaluation for 6G ultra-massive MIMO[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2025, 40(1): 89-95, 123. DOI: 10.12265/j.cjors.2024026 |
[2] | LI Jiaxuan, ZHANG Xiaoying, XU Zhiqiu, LIU Xiaoran, WEI Jibo, ZHAO Haitao. Classification and modeling of urban V2V channel scenarios based on multimodal scenario features[J]. CHINESE JOURNAL OF RADIO SCIENCE. DOI: 10.12265/j.cjors.2025095 |
[3] | LI Xinxing, LIU Liu, ZHANG Jiachi, ZHANG Zhendong, CAI Yuchen. A V2I channel model based on Matérn hard-core Poisson cluster process[J]. CHINESE JOURNAL OF RADIO SCIENCE. DOI: 10.12265/j.cjors.2024215 |
[4] | GUAN Ke, ZHANG Meiwen, HE Danping, AI Bo, LIU Ting, WANG Xiping, WEI Yao, ZHAO Xu, LU Bin, DOU Jianwu, WANG Xinhui, ZHONG Zhangdui. The current situation and prospects of the critical digital twin technology for wireless channels[J]. CHINESE JOURNAL OF RADIO SCIENCE. DOI: 10.12265/j.cjors.2024178 |
[5] | MAO Kai, ZHU Qiuming, LEI Taiya, WU Qihui, LI Hanpeng, HUA Boyu, YANG Yuxin. A survey of wireless channel measurement system for UAV communications[J]. CHINESE JOURNAL OF RADIO SCIENCE. DOI: 10.12265/j.cjors.2024151 |
[6] | ZHANG Jianhua, WANG Yujie, TANG Pan, LIU Baoling, JIANG Tao. Overview of research on channel characteristics and modeling in the IIoT scenarios(Invited)[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2023, 38(1): 3-14. DOI: 10.12265/j.cjors.2022158 |
[7] | ZHANG Xu, JIANG Suying, YANG Mi, WANG Wei, HE Ruisi, HOU Jun, LIU Xinyi. Measurement and analysis of fading characteristics of V2V propagation channel in two tunnels[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2021, 36(3): 443-452. DOI: 10.12265/j.cjors.2020218 |
[8] | HAO Xiaojing, LI Qingliang, GUO Lixin, HAN Jie, Guo Xiangming. Reliability and accuracy to atmospheric duct prediction based on MM5V3[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2017, 32(6): 725-734. DOI: 10.13443/j.cjors.2017072001 |
[9] | LI Yitian, LIANG Xiaolin, ZHANG Rui, LI Bohan, ZHAO Xiongwen. Performance of wideband V2V MIMO communication systems[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2017, 32(5): 561-569. DOI: 10.13443/j.cjors.2017091303 |
[10] | CHEN Xiaomin, TAN Wei, YU Xiaodan, YU Xiangbin, ZHU Qiuming. Power allocation algorithm for V-BLAST system with feedback delay
|
1. |
徐享希,李炯彬,郭志远. 车联网网络安全挑战与评估技术分析. 质量与认证. 2025(02): 83-86+91 .
![]() | |
2. |
代亮,王宁,白浩男,宁耀军,孟芸,许宏科. 蜂窝车联网侧行链路信道测量与分析. 电波科学学报. 2024(02): 361-370 .
![]() | |
3. |
张建华,王珩,张宇翔,唐盼,于力,许慧鑫,刘亚萌,刘西曼,巩汇文,田磊. 6G信道新特性与建模研究:挑战、进展与展望. 中国科学:信息科学. 2024(05): 1114-1143 .
![]() | |
4. |
吴文艾,张治国,罗永,尚丽莎. 基于遗传算法的CBTC系统AP部署优化问题研究. 自动化与仪器仪表. 2023(03): 125-129+133 .
![]() | |
5. |
何港,张治中,邓炳光,胡玲玲. V2V三维宽带信道建模与统计特性分析. 重庆邮电大学学报(自然科学版). 2023(02): 273-285 .
![]() | |
6. |
宋吉婷,王威,孙郁哲,姜苏英,张旭. 矩形隧道下存在车辆遮挡的V2V信道测量与分析. 哈尔滨工业大学学报. 2022(05): 117-123 .
![]() | |
7. |
邓炳光,秦启航,孟凡军. 隧道场景下非平稳多簇V2V信道建模与分析. 无线电工程. 2022(08): 1361-1367 .
![]() | |
8. |
程翔,张浩天,杨宗辉,黄子蔚,李思江,余安澜. 车联网通信感知一体化研究:现状与发展趋势. 通信学报. 2022(08): 188-202 .
![]() | |
9. |
初星河,路兆铭,王鲁晗,武穆清,温向明. 多径信号辅助的网联车辆无线协作定位. 北京邮电大学学报. 2021(02): 116-123 .
![]() | |
10. |
苏昭阳,刘留,樊圆圆,庄凌凡,王凯,王致远,郑胜洁,程立志,任婷婷. C-V2X信道特性与建模方法研究. 移动通信. 2021(06): 20-26 .
![]() | |
11. |
苏昭阳,刘留,冯毅. 基于典型无线场景库的LTE-V2X信道特性. 中兴通讯技术. 2021(06): 53-57 .
![]() |