Reference format: | ZHAO Jichao, TAO Haihong, JI Ru, GAO Zhiqi. Joint DOA and polarization parameters estimation based on three-component electromagnetic vector sensor[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2016, 31(1): 39-46. doi: 10.13443/j.cjors.2015040203 |
[1] |
PALDI N E. Vector-sensor array processing for electromagnetic source localization[J]. IEEE transactions on signal processing, 1994, 42(2):376-398. doi: 10.1109/78.275610
|
[2] |
SCHMIDT R O. Multiple emitter location and signal parameter estimation[J]. IEEE transactions on antennas and propagation, 1986, 34(3):276-280. doi: 10.1109/TAP.1986.1143830
|
[3] |
ROY R, PAULRAJ A, KAILATH T. ESPRIT-a subspace rotation approach to estimation of parameters of cissoids in noise[J]. IEEE transactions on ASSP, 1986, 34(10):1340-1342. http://citeseer.uark.edu:8080/citeseerx/showciting;jsessionid=C52B8EFCEC06B83ECC18579696F91F5E?cid=1459007
|
[4] |
WONG K T, ZOLTOWSKI M D. Polarization-beamspace self-initiating MUSIC for azimuth/elevation angle estimation[C]//Proceedings of IEE Radar Conference, Edinburgh, October 14-16, 1997. IET, 1997: 328-333.
|
[5] |
LI J, STOICA P, ZHENG D M. Efficient direction and polarization estimation with a COLD array[J]. IEEE transactions on antennas and propagation, 1996, 44(4):539-547. doi: 10.1109/8.489306
|
[6] |
MIRON S, LE BIHAN N, MARS J I. Quaternion-MUSIC for vector-sensor array processing[J]. IEEE transactions on signal processing, 2006, 54(4):1218-1229. doi: 10.1109/TSP.2006.870630
|
[7] |
LE BIHAN N, MIRON S, MARS J I. MUSIC algorithm for vector-sensors array using biquaternions[J]. IEEE transactions on signal processing, 2007, 55(9):4523-4533. doi: 10.1109/TSP.2007.896067
|
[8] |
龚晓峰, 徐友根, 刘志文.四四元数域低秩逼近及其在矢量阵列波达方向估计中的应用[J].北京理工大学学报, 2008, 28(11):1013-1017. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjlgdxxb200811017
GONG X F, XU Y G, LIU Z W. Quad-quaternion low rank approximation with applications to vector-sensor array direction of arrival estimation[J]. Transactions of Beijing Institute of Technology, 2008, 28(11):1013-1017. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjlgdxxb200811017
|
[9] |
李京书, 陶建武.信号DOA和极化信息联合估计的降维四元数MUSIC方法[J].电子与信息学报, 2011, 33(1):106-111. http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201101019
LI J S, TAO J W. The dimension reduction quaternion MUSIC algorithm for jointly estimating DOA and polarization[J]. Journal of electronics & information technology, 2011, 33(1):106-111. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201101019
|
[10] |
李新波, 李晓青, 刘国君, 等.用于声矢量阵列波达方向估计的四元数最小范数法[J].光学精密工程, 2014, 22(7):1969-1975. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201407036
LI X B, LI X Q, LIU G J, et al. Quaternion min-norm algorithm for DOA estimation with acoustic vector sensor array[J]. Optics and precision engineering, 2014, 22(7):1969-1975. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201407036
|
[11] |
李晓青, 赵亚卫, 李新波, 等.均匀圆阵声矢量阵的四元数二维波达方向估计[J].吉林大学学报(信息科学版), 2014, 32(5):451-457 doi: 10.3969/j.issn.1671-5896.2014.05.001
LI X Q, ZHAO Y W, LI X B, et al. Two-dimensional DOA estimation using quaternion based on UCA of acoustic vector sensor[J]. Journal of Jilin University (information science edition), 2014, 32(5):451-457. (in Chinese) doi: 10.3969/j.issn.1671-5896.2014.05.001
|
[12] |
GONG X F, XU Y G, LIU Z W. Quaternion ESPRIT for direction finding with a polarization sensitive array[C]//Signal Processing ICSP 9th International Conference, October 26-29, 2008, Beijing. IEEE, 2008: 378-381. https://www.infona.pl/resource/bwmeta1.element.ieee-art-000004697149
|
[13] |
赵继超, 陶海红, 高志奇.基于降维四元数旋转不变子空算法波达角估计[J].电波科学学报, 2015, 33(3):483-490. http://www.cjors.cn/CN/abstract/abstract420.shtml
ZHAO J C, TAO H H, GAO Z Q. DOA estimation using dimension reduction quaternion estimation of signal parameters via rotational invariance techniques[J]. Chinese journal of radio science, 2015, 33(3):483-490. (in Chinese) http://www.cjors.cn/CN/abstract/abstract420.shtml
|
[14] |
MA W K, HSIEH T H, CHI C Y. DOA estimation of quasi-stationary signals with less sensors than sources and unknown spatial noise covariance:a Khrtri-Rao subspace approach[J]. IEEE transactions on signal processing, 2010, 58(4):2168-2180. doi: 10.1109/TSP.2009.2034935
|
[15] |
NIE X, LI L P. A computationally efficient subspace algorithm for 2-D DOA estimation with L-shaped array[J]. IEEE signal processing letters, 2014, 21(8):971-974. doi: 10.1109/LSP.2014.2321791
|
1. |
张涛,孙昭乾,郭沐然. 基于矩阵分布式重构的正交极化阵DOA估计. 信号处理. 2024(10): 1822-1833 .
![]() | |
2. |
赵春雷,王亚梁,阳云龙,毛兴鹏,于长军. 雷达极化信息获取及极化信号处理技术研究综述. 雷达学报. 2016(06): 620-638 .
![]() |