• Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS

Latest Notice

Latest Notice

WeChat Official Account

WeChat Official Account

GUO C Y, YE H X. Cutoff wavenumber and spectrum for electromagnetic scattering computation with two-scale method[J]. Chinese journal of radio science,2025,40(2):313-322. (in Chinese). DOI: 10.12265/j.cjors.2024054
Reference format: GUO C Y, YE H X. Cutoff wavenumber and spectrum for electromagnetic scattering computation with two-scale method[J]. Chinese journal of radio science,2025,40(2):313-322. (in Chinese). DOI: 10.12265/j.cjors.2024054

Cutoff wavenumber and spectrum for electromagnetic scattering computation with two-scale method

More Information
  • Received Date: March 19, 2024
  • Accepted Date: May 30, 2024
  • Available Online: May 30, 2024
  • The two-scale model (TSM) is widely used for electromagnetic scattering simulation of randomly rough sea surfaces. The geometric roughness spectrum and truncation wavenumber are two key factors directly affecting the accuracy of TSM simulation. Taking the geophysical model function (GMF) developed with the observation data as a reference, these two key factors are quantitatively studied in this paper. The empirical function of the truncation wavenumber model is fitted with the regression methods. The simulation results show that the Apel spectrum is more suitable for simulating the backscattering of rough sea surface in C, X, and Ku bands, and the simulation error with the proposed empirical function of truncation wavenumber under different conditions are all less than 1 dB. Comparative analysis with existing truncated wavenumber models shows that the proposed truncation wavenumber model can effectively calculate the Bragg scattering contribution from the roughness spectrum, and the model function has a wider applicable band and observation angle.

  • [1]
    PENG Y,XIE X,LIN M,et al. A modeling study of the impact of the sea surface temperature on the backscattering coefficient and wind field retrieval[J]. IEEE access,2020,8:78652-78662. doi: 10.1109/ACCESS.2020.2990160
    [2]
    SUN D,ZHANG Y,WANG Y,et al. Ocean wave inversion based on airborne IRA images[J]. IEEE transactions on geoscience and remote sensing,2022,60:1-13.
    [3]
    YUEH S H. Modeling of wind direction signals in polarimetric sea surface brightness temperatures[J]. IEEE transactions on geoscience and remote sensing,1997,35(6):1400-1418. doi: 10.1109/36.649793
    [4]
    王晓霞,刘建强,张毅,等. 基于卫星微波散射计风场的台风中心定位方法比较研究[J]. 海洋预报,2020,37(5):24-33. doi: 10.11737/j.issn.1003-0239.2020.05.003

    WANG X X,LIU J Q,ZHANG Y,et al. Comparative study on typhoon center locating based on satellite microwave scatterometer wind field[J]. Marine forecasts,2020,37(5):24-33. (in Chinese) doi: 10.11737/j.issn.1003-0239.2020.05.003
    [5]
    冯琦,李广雪. 基于 Sentinel-1 的辽东湾海冰冰情监测[J]. 海岸工程,2024,43(1):66-78. doi: 10.12362/j.issn.1002-3682.20230716001

    FENG Q,LI G X. Monitoring of sea ice situation in the Liaodong Bay based on Sentinel-1 data[J]. Coastal engineering,2024,43(1):66-78. (in Chinese) doi: 10.12362/j.issn.1002-3682.20230716001
    [6]
    LI X M,LEHNER S. Algorithm for sea surface wind retrieval from TerraSAR-X and TanDEM-X data[J]. IEEE transactions on geoscience and remote sensing,2014,52(5):2928-2939. doi: 10.1109/TGRS.2013.2267780
    [7]
    王小宁,刘丽霞,陈文新. 海洋二号卫星微波散射计系统设计与应用[J]. 中国工程科学,2013,15(7):33-38. doi: 10.3969/j.issn.1009-1742.2013.07.005

    WANG X N,LIU L X,CHEN W X. The system design and application of HY-2A scatterometer[J]. Strategic study of CAE,2013,15(7):33-38. (in Chinese) doi: 10.3969/j.issn.1009-1742.2013.07.005
    [8]
    WENTZ F J. A two-scale scattering model for foam-free sea microwave brightness temperatures[J]. Journal of geophysical research,1975,80(24):3441-3446. doi: 10.1029/JC080i024p03441
    [9]
    PLANT W J. A two-scale model of short wind-generated waves and scatterometry[J]. Journal of geophysical research:oceans,1986,91(C9):10735-10749. doi: 10.1029/JC091iC09p10735
    [10]
    刘万萌,童创明,王童. 复杂海面电磁散射的修正面元模型[J]. 西安交通大学学报,2017,51(12):35-41.

    LIU W M,TONG C M,WANG T. A modified facet-model of electromagnetic scattering from complex ocean surface[J]. Journal of Xi’an Jiaotong University,2017,51(12):35-41. (in Chinese)
    [11]
    WANG T,TONG C. An improved facet-based TSM for electromagnetic scattering from ocean surface[J]. IEEE geoscience and remote sensing letters,2018,15(5):644-648. doi: 10.1109/LGRS.2018.2810308
    [12]
    FUNG A K,CHEN K S. Kirchhoff model for a skewed random surface[J]. Journal of electromagnetic waves and applications,1991,5(2):205-216. doi: 10.1163/156939391X00572
    [13]
    TSANG L,KONG J A. Scattering of electromagnetic waves:advanced topics[M]. Wiley,2001.
    [14]
    VALENZUELA G R. Theories for the interaction of electromagnetic and oceanic waves:a review[J]. Boundary-layer meteorology,1978,13(1-4):61-85. doi: 10.1007/BF00913863
    [15]
    MEISSNER T,WENTZ F J. The complex dielectric constant of pure and sea water from microwave satellite observations[J]. IEEE transactions on geoscience and remote sensing,2004,42(9):1836-1849. doi: 10.1109/TGRS.2004.831888
    [16]
    张勇,孙强,吕达仁. 几种海水微波复介电常数模型的比较和分析[J]. 遥感技术与应用,2014,29(2):212-218.

    ZHANG Y,SUN Q,LYU D R. Comparison and analysis of several models for microwave complex dielectric constant of sea water[J]. Remote sensing technology and application,2014,29(2):212-218. (in Chinese)
    [17]
    ZHOU Y,LANG R H,DINNAT E P,et al. Seawater Debye model function at L-band and its impact on salinity retrieval from Aquarius satellite data[J]. IEEE transactions on geoscience and remote sensing,2021,59(10):8103-8116. doi: 10.1109/TGRS.2020.3045771
    [18]
    LANG R,ZHOU Y,UTKU C,et al. Accurate measurements of the dielectric constant of seawater at L band[J]. Radio science,2016,51(1):2-24. doi: 10.1002/2015RS005776
    [19]
    MÄTZLER C. Thermal microwave radiation:applications for remote sensing[M]. London:Institution of Engineering and Technology,2006.
    [20]
    PIERSON W J,MOSKOWITZ L. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii[J]. Journal of geophysical research,1964,69(24):5181-5190. doi: 10.1029/JZ069i024p05181
    [21]
    PREISENDORFER R W,MOBLEY C D. Albedos and glitter patterns of a wind-roughened sea surface[J]. Journal of physical oceanography,1986,16(7):1293-1316. doi: 10.1175/1520-0485(1986)016<1293:AAGPOA>2.0.CO;2
    [22]
    KUDRYAVTSEV V,HAUSER D,CAUDAL G,et al. A semiempirical model of the normalized radar cross-section of the sea surface 1. background model[J]. Journal of geophysical research:oceans,2003,108(C3):1-24.
    [23]
    ELFOUHAILY T,CHAPRON B,KATSAROS K,et al. A unified directional spectrum for long and short wind-driven waves[J]. Journal of geophysical research:oceans,1997,102(C7):15781-15796. doi: 10.1029/97JC00467
    [24]
    HWANG P A,FOIS F. Surface roughness and breaking wave properties retrieved from polarimetric microwave radar backscattering[J]. Journal of geophysical research:oceans,2015,120(5):3640-3657.
    [25]
    DURDEN S,VESECKY J. A physical radar cross-section model for a wind-driven sea with swell[J]. IEEE journal of oceanic engineering,1985,10(4):445-451. doi: 10.1109/JOE.1985.1145133
    [26]
    APEL J R. An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter[J]. Journal of geophysical research:oceans,1994,99(C8):16269-16291. doi: 10.1029/94JC00846
    [27]
    RYABKOVA M,KARAEV V,GUO J,et al. A review of wave spectrum models as applied to the problem of radar probing of the sea surface[J]. Journal of geophysical research:oceans,2019,124(10):7104-7134.
    [28]
    XIE D,CHEN K S,YANG X. Effects of wind wave spectra on radar backscatter from sea surface at different microwave bands:a numerical study[J]. IEEE transactions on geoscience and remote sensing,2019,57(9):6325-6334. doi: 10.1109/TGRS.2019.2905558
    [29]
    GUISSARD A,SOBIESKI P. An approximate model for the microwave brightness temperature of the sea[J]. International journal of remote sensing,1987,8(11):1607-1627. doi: 10.1080/01431168708954802
    [30]
    LI D,ZHAO Z,QI C,et al. An improved two-scale model for electromagnetic backscattering from sea surface[J]. IEEE geoscience and remote sensing letters,2020,17(6):953-957. doi: 10.1109/LGRS.2019.2940036
    [31]
    LIU Q,WENG F,ENGLISH S J. An improved fast microwave water emissivity model[J]. IEEE transactions on geoscience and remote sensing,2011,49(4):1238-1250. doi: 10.1109/TGRS.2010.2064779
    [32]
    STOFFELEN A,VERSPEEK J A,VOGELZANG J,et al. The CMOD7 geophysical model function for ASCAT and ERS wind retrievals[J]. IEEE journal of selected topics in applied earth observations and remote sensing,2017,10(5):2123-2134. doi: 10.1109/JSTARS.2017.2681806
    [33]
    Royal Netherlands Meteorological Institute. NSCAT-4 geophysical model function[CP/OL]. (2016-03-01). http://projects.knmi.nl/scatterometer/nscat_gmf/
    [34]
    QUEGAN S. Understanding synthetic aperture radar images[M]. Raleigh,NC:SciTech Publishing,Inc.,2004.
    [35]
    岳冬晓. SAR图像统计建模与解译[D]. 上海:复旦大学,2020.

    YUE D X. Statistical modeling and interpretation of SAR images[D]. Shanghai:Fudan University,2020. (in Chinese)
    [36]
    SHAO W,ZHANG Z,LI X,et al. Sea surface wind speed retrieval from TerraSAR-X HH polarization data using an improved polarization ratio model[J]. IEEE journal of selected topics in applied earth observations and remote sensing,2016,9(11):4991-4997. doi: 10.1109/JSTARS.2016.2590475
    [37]
    JOHNSON J T,RAINES E,TOPORKOV J V,et al. On the cutoff wavenumber in the geometrical optics theory of near specular scattering from the sea surface[C]// 2022 IEEE International Geoscience and Remote Sensing Symposium. IEEE,Kuala Lumpur:2022.
    [38]
    BISHOP C M. Pattern recognition and machine learning[M]. New York:Springer,2006.
  • Related Articles

    [1]TIAN Zhengqiu, HE Siyuan, CAI Zhihao, WANG Xiaoyi. Forward modeling and analysis of target scattering centers on dielectric rough ground[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2025, 40(1): 12-20. DOI: 10.12265/j.cjors.2024184
    [2]WU Jian, LIU Zhe, NI Shaojie, WANG Feixue. Auto-correlation function modeling of GNSS signal after FDIS method and analysis of the acquisition performance[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2020, 35(4): 614-621. DOI: 10.13443/j.cjors.2020042201
    [3]PAN Xiaodong, WEI Guanghui, WAN Haojiang, LU Xinfu, LI Wei, WANG Yaping. Prediction model of blocking interference effects for electronic equipment under the condition of the dual-frequency narrow spectrum in-band electromagnetic radiation[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2020, 35(3): 377-385. DOI: 10.13443/j.cjors.2019060501
    [4]ZHANG Yurong, HE Siyuan, ZHANG Yunhua, ZHU Guoqiang, LIU Jin. Forward scattering center parametric modeling of complex targets on the ground rough surface[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2020, 35(2): 205-213. DOI: 10.13443/j.cjors.2019083001
    [5]WANG Jingjing, WANG Anqi, JIANG Tiezhen, HUANG Zhixiang. A fast algorithm for electromagnetic scattering from a 1D perfectly electric conductor rough sea surface based on characteristic basis function method[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2018, 33(5): 605-612. DOI: 10.13443/j.cjors.2017101302
    [6]ZHANG Dongmin, LIAO Cheng, ZHANG Qinghong. Three-dimensional parabolic equation model for rough sea surface based on fractal method and its application[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2016, 31(5): 870-876. DOI: 10.13443/j.cjors.2016041001
    [7]ZHANG Yuanyuan, WU Zhensen, ZHANG Yushi. The effective permittivity and roughness parameters inversion by the land backscattering measured data[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2016, 31(1): 79-84. DOI: 10.13443/j.cjors.2015020201
    [8]LI Changze, TONG Chuangming, QI Lihui, WU Guanghui, WANG An. Analysis on fast electromagnetic scattering characteristics for three novel randomly rough surface models[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2015, 30(6): 1093-1101. DOI: 10.13443/j.cjors.2015012901
    [9]YUAN Guobin, LIANG Tao, NI Yan. Assistant decision model for vessel formation electromagnetic spectrum management[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2013, 28(4): 726-730.
    [10]XU Zonglong2, YU Song2, WANG Jian1, 2, WANG Xianyi2. Evaluation of spectrum plans based on fuzzy matterelement optimization model[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2013, 28(3): 594-599.

Catalog

    Article views (166) PDF downloads (73) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return