• Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS

Latest Notice

Latest Notice

WeChat Official Account

WeChat Official Account

LIU D, YU X, XIONG W, et al. Scintillation events identification based on spectral features[J]. Chinese journal of radio science,2024,39(1):173-180. (in Chinese). DOI: 10.12265/j.cjors.2022276
Reference format: LIU D, YU X, XIONG W, et al. Scintillation events identification based on spectral features[J]. Chinese journal of radio science,2024,39(1):173-180. (in Chinese). DOI: 10.12265/j.cjors.2022276

Scintillation events identification based on spectral features

More Information
  • Received Date: December 26, 2022
  • Accepted Date: August 06, 2023
  • Available Online: August 06, 2023
  • Detecting a potential scintillation event is precondition for any following countermeasures in GNSS applications. Performance of machine learning (ML) methods to identify scintillation events is analyzed for various scenarios with measurements from different periods, areas and observing systems. It shows that signal spectrum characterizes scintillation variation fundamentally. Accuracy of different methods based on ML is generally better than 90% from test data, with the best one 98.5% and the least one 91.3%. It is also found less spectral coefficients with a lower cut-off frequency for model training contributes to better performance, indicating the descending trend exists around Fresnel frequency is the essential one to distinguish a potential scintillation event. This give evidence that precise GNSS routine observations with sampling rate of 1 Hz might be used for scintillation recognition. When a set of parameters is adopted to fit spectrum feature and then used for ML training, better performance can even be expected.

  • [1]
    KINTNER P M, LEDVINA B M, DE PAULA E R. GPS and ionospheric scintillations[J]. Space weather,2007,5(9):83-104.
    [2]
    KINTNER P M, LEDVINA B M, DE PAULA E R, et al. Size, shape, orientation, speed, and duration of GPS equatorial anomaly scintillations[J]. Radio science,2004,39:RS2012. DOI: 10.1029/2003RS002878
    [3]
    BASU S, KUDEKI E, BASU S, et al. (1996), Scintillations, plasma drifts, and neutral winds in the equatorial ionosphere after sunset[J]. Journal of geophysical research, A. space physics: JGR, 101(12): 26, 795-26, 809.
    [4]
    MCNEIL W J, LONG A R, KENDRA M J. Detection and characterization of equatorial scintillation for real-time operational support[R]. Scientific Report #12, Phillips Laboratory, April 18, 1997.
    [5]
    LINTY N, FARASIN A, FAVENZA A, et al. Detection of GNSS ionospheric scintillations based on machine learning decision tree[J]. IEEE transactions on aerospace and electronic systems,2019,55(1):303-317. doi: 10.1109/TAES.2018.2850385
    [6]
    FRANZESE G, LINTY N, DOVIS F. Semi-supervised GNSS scintillations detection based on DeepInfomax[J]. Applied sciences,2020,10:381. DOI: 10.381/app10010381
    [7]
    SAVAS C, DOVIS F. The impact of different kernel functions on the performance of scintillation detection based on support vector machines[J]. Sensors,2019,19:5219. DOI: 10.3390/s19235219
    [8]
    MAKHLOUF B. GNSS Ionospheric scintillations classification by machine learning[D]. Polytechnic University of Turin, 2019.
    [9]
    LIN M Y, ZHU X F, HUA T, et al. Detection of ionospheric scintillation based on XGBoost model improved by SMOTE-ENN technique[J]. Remote sensing,2021,13:2577. DOI: 10.3390/rs13132577
    [10]
    JIAO Y, HALL J J, MORTON Y T. Automatic equatorial GPS amplitude scintillation detection using a machine learning algorithm[J]. IEEE transactions on aerospace and electronic systems,2017,53:405-418. doi: 10.1109/TAES.2017.2650758
    [11]
    JIAO Y, HALL J J, MORTON Y T. Performance evaluation of an automatic GPS ionospheric phase scintillation detector using a machine-learning algorithm[J]. Journal of The Institute of Navigation,2017,64:391-402. doi: 10.1002/navi.188
    [12]
    KINTNER P M JR, O’HANLON B, GARY D E, et al. Global positioning system and solar radio burst forensics, Radio science, 2009, 44: RS0A08. DOI: 10.1029/2008RS004039
    [13]
    LIU D, HAN C, JIN R M, et al. Analysis and modeling on interference of solar radio burst on GNSS signal[C]// CSNC 2019, Beijing: 196-206.
    [14]
    RINO C. A power law phase screen model for ionospheric scintillation: 1 weak scatter[J]. Radio science, 1979, 14: 1135-1145.
    [15]
    CARRANO C, RINO C. A theory of scintillation for two-component power law irregularity spectra: overview and numerical results[J]. Radio science,2016,51:789-813. DOI: 10.1002/2015RS005903
    [16]
    周志华, 机器学习[M], 清华大学出版社, 2016年1月.
    [17]
    JUAN J M, ARAGON-ANGEL A, SANZ J, et al. A method for scintillation characterization using geodetic receivers operating at 1 Hz[J]. Journal of geodesy,2017,91(11):1383-1397. doi: 10.1007/s00190-017-1031-0
    [18]
    PI X, MANNUCCI A J, LINDQUISTER U J, et al. Monitoring of global ionospheric irregularities using the worldwide GPS network[J]. Geophysical research letters,1997,24(18):2283-2286. doi: 10.1029/97GL02273
  • Related Articles

    [1]LIU Chunyu, YUAN Jun, SUN Xiaomeng, ZHANG Lei, ZHANG Bo. Offline real wireless interference signal classification based on denoising diffusion probability model[J]. CHINESE JOURNAL OF RADIO SCIENCE. DOI: 10.12265/j.cjors.2024147
    [2]CHEN Tao, LIU Dun, YU Xiao, HAO Yi, GUO Shan, ZHU Qinglin. Maximum likelihood estimation of irregularity parameters with spectrum fitting[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2023, 38(5): 807-815. DOI: 10.12265/j.cjors.2022267
    [3]LI Yang, Wang Guanyun, WANG Yanping, LIN Yun, HONG Wen. Scattering feature decomposition and SVM classification of multi-angle polarimetric SAR images[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2019, 34(6): 771-777. DOI: 10.13443/j.cjors.2019043002
    [4]JIANG Xiaonan, LI Hui, GUO Lixin. Perturbation power spectrum of dust plasma in the polar summer mesopause region[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2019, 34(2): 244-248. DOI: 10.13443/j.cjors.2018081301
    [5]GUO Yanbo, LI Xue, CHENG Yanfeng. Backscatter ionogram classification based shape recognition[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2016, 31(3): 443-449. DOI: 10.13443/j.cjors.2015062801
    [6]SHI Shaoying, DU Pengfei, ZHANG Jing, CAO Chen. Multi-target joint detection, tracking and classification using radar information[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2016, 31(1): 10-18. DOI: 10.13443/j.cjors.2015040202
    [7]WANG Baoshuai, DU Lan, ZHANG Xuefeng, WANG Xu, LIU Hongwei.

    Robust classification scheme for airplane targets


    [J]. CHINESE JOURNAL OF RADIO SCIENCE, 2014, 29(6): 1016-1021+1044. DOI: 10.13443/j.cjors.2013112101

    [8]JIA Shouqing, JIANG Xiaomin, XIA Mingyao. Target classification by microDoppler feature [J]. CHINESE JOURNAL OF RADIO SCIENCE, 2013, 28(3): 444-448.
    [9]WANG Fang, SHENG Weixing, MA Xiaofeng, WANG Hao. Target classification for ISAR image based on histogram statistics[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2012, 27(4): 726-732.
    [10]LI Yan-bing, DU Lan, LIU Hong-wei, XU Dan-lei, GUAN Yong-sheng. Moving ground targets classification based on eigenvalue sequence of echo signal[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2011, 26(4): 641-648.

Catalog

    Article views (153) PDF downloads (43) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return