• Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS

Latest Notice

Latest Notice

WeChat Official Account

WeChat Official Account

XU Guanjun, SONG Zhaohui. Weaken solar scintillation prediction model for EM wave propagation in deep space[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2017, 32(4): 377-384. doi: 10.13443/j.cjors.2017072601
Reference format: XU Guanjun, SONG Zhaohui. Weaken solar scintillation prediction model for EM wave propagation in deep space[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2017, 32(4): 377-384. doi: 10.13443/j.cjors.2017072601

Weaken solar scintillation prediction model for EM wave propagation in deep space

More Information
  • Received Date: July 25, 2017
  • Available Online: December 30, 2020
  • Published Date: August 30, 2017
  • Electromagnetic (EM) waves propagating through the solar corona irregularities suffer solar scintillation during superior solar conjunction. Considering the geometric of the communication model, the corona structure and the turbulence spectral model, a prediction model for both amplitude fluctuations, phase fluctuations and angle-of-arrival fluctuations is proposed with the weaken scintillation theory. The simulation results demonstrate that the solar corona parameters, such as the spectral index and the turbulence outer scale have a tremendous impact on the fluctuations. Besides, solar scintillation increases with the decreasing of the heliocentric distance and its impact can be reduced by enhancing the EM waves frequency. Furthermore, the proposed model shows great agreement with the observed data and its accuracy increases when the radio frequency gets larger. Therefore, our solar scintillation prediction model can be effectively applied in the future deep space exploration.
  • [1]
    RAWSON S, FORNAROLI M, BOZZI M, et al. Future architectures for ESA deep space ground stations antennas[C]//The 5th European Conference on Antennas and Propagation. Rome: IEEE, April 11-15, 2011. https://ieeexplore.ieee.org/document/5782535
    [2]
    WU W R, LIU W W, QIAO D, et al. Investigation on the development of deep space exploration[J]. Science China technological sciences, 2012, 55(4):1086-1091. doi: 10.1007/s11431-012-4759-z
    [3]
    张乃通, 李晖, 张钦宇.深空探测通信技术发展趋势及思考[J].宇航学报, 2007, 28(4):786-793. doi: 10.3321/j.issn:1000-1328.2007.04.003

    ZHANG N T, LI H, ZHANG Q Y. Thought and developing trend in deep space exploration and communication[J]. Journal of astronautics, 2007, 28(4):786-793. (in Chinese) doi: 10.3321/j.issn:1000-1328.2007.04.003
    [4]
    LI Q, YIN L, LU J. Performance study of a deep space communications system with low-density parity-check coding under solar scintillation[J]. International journal of communications, 2012, 6(1):1-9. doi: 10.18352/ijc.334
    [5]
    陆建华, 葛宁, 杜冰.复杂性与不确定性:无线通信面临的双重挑战[J].中国科学:信息科学, 2013, 43(12):1563-1577. http://d.old.wanfangdata.com.cn/Thesis/Y1209395

    LU J H, GE N, DU B. Complexity and uncertainty:wireless communications face dual challenges[J]. Scientia sinica informationis, 2013, 43(12):1563-1577. (in Chinese) http://d.old.wanfangdata.com.cn/Thesis/Y1209395
    [6]
    XU G, SONG Z. A new model of amplitude fluctuations for radio propagation in solar corona during superior solar conjunction[J]. Radio science, 2016, 51(2):RS005769. doi: 10.1002/2015RS005769/full
    [7]
    HO C M, MORABITO D D, WOO R. Using phase scintillation spectral measurements to determine angle-of-arrival fluctuations during solar superior conjunction[J]. Radio science, 2010, 45(3):RS3005. http://ieeexplore.ieee.org/document/7775955/
    [8]
    MADDE R, MORLEY T, LANUCARA M, et al. A common receiver architecture for ESA radio science and delta-DOR support[J]. Proceedings of the IEEE, 2007, 95(11):2215-2223. doi: 10.1109/JPROC.2007.905184
    [9]
    EFIMOV A I, SAMOZNAEV L N, BIRD M K, et al. Solar wind turbulence during the solar cycle deduced from Galileo coronal radio-sounding experiments[J]. Advances in space research, 2008, 42(1):117-123. doi: 10.1016/j.asr.2008.03.025
    [10]
    BISI M M, FALLOWS R A, BREEN A R, et al. Interplanetary scintillation observations of stream interaction regions in the solar wind[J]. Solar Physics, 2010, 261(1):149-172. doi: 10.1007/s11207-009-9471-1
    [11]
    吴桐, 闫毅, 李永成, 等.太阳闪烁下深空信道建模与电波传播特性分析[J].电波科学学报, 2015, 30(3):417-422. http://www.cjors.cn/CN/abstract/abstract410.shtml

    WU T, YAN Y, LI Y C, et al. Deep space channel modeling and the analysis of wave propagation environment characteristics under solar scintillation[J]. Chinese journal of radio science, 2015, 30(3):417-422.(in Chinese) http://www.cjors.cn/CN/abstract/abstract410.shtml
    [12]
    THEJAPPA G, MACDOWALL R J. Effects of scattering on radio emission from the quiet Sun at low frequencies[J]. The astrophysical journal, 2008, 676(2):1338. doi: 10.1086/523316
    [13]
    BASTIAN T S. Radio interferometric observations of scattering phenomena in the outer solar corona[C]//The 9th European Meeting on Solar Physics, Florence, 1999. https://www.mendeley.com/catalogue/radio-interferometric-observations-scattering-phenomena-outer-solar-corona/
    [14]
    KULIZHSKY A V. Uniform integral representation for the fluctuating field propagating through the multi-scale media[J]. Waves in random and complex media, 2016:1-19. DOI:10.1080-17455030.2016.1229874
    [15]
    GRIMA C, BLANKENSHIP D D, SCHROEDER D M. Radar signal propagation through the ionosphere of Europa[J]. Planetary and space science, 2015, 117:421-428. doi: 10.1016/j.pss.2015.08.017
    [16]
    RINO C L, CARRANO C S. The application of numerical simulations in Beacon scintillation analysis and modeling[J]. Radio science, 2011, 46(3):RS004563. http://ieeexplore.ieee.org/document/7776109/
    [17]
    XU Z W, WU J, WU S, et al. Solution for the fourth moment equation of waves in random continuum under strong fluctuations:general theory and plane wave solution[J]. IEEE transactions on antennas and propagation, 2007, 55(6):1613-1621. doi: 10.1109/TAP.2007.897301
    [18]
    HO C M, WHEELON A. Amplitude scintillation due to atmospheric turbulence for the deep space network Ka-band downlink[R]. Pasadena: Jet Propulsion Laboratory, 2004.
    [19]
    VILAR E, SMITH H. A theoretical and experimental study of angular scintillations in earth space paths[J]. IEEE transactions on antennas and propagation, 1986, 34(1):2-10. doi: 10.1109/TAP.1986.1143720
    [20]
    MANOHARAN P K. Three-dimensional evolution of solar wind during solar cycles 22-24[J]. The astrophysical journal, 2012, 751(2):128. doi: 10.1088/0004-637X/751/2/128
    [21]
    NETWORK D S. DSN telecommunications link design handbook[R]. Pasadena: Jet Propulsion Laboratory, 2014.
    [22]
    CALVÉS G M, POGREBENKO S V, CIMÒ G, et al. Observations and analysis of phase scintillation of spacecraft signal on the interplanetary plasma[J]. Astronomy and astrophysics, 2014, 564(A4):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c0315e88a2f18eb59082423f866a255b

Catalog

    Article views (300) PDF downloads (210) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return