HEI Y L, WANG M, WU Y Z, et al. High-gain and high-aperture-efficiency Fabry-Perot cavity antenna[J]. Chinese journal of radio science,2021,36(5):721-729. (in Chinese). DOI: 10.13443/j.cjors.2020060501
      Reference format: HEI Y L, WANG M, WU Y Z, et al. High-gain and high-aperture-efficiency Fabry-Perot cavity antenna[J]. Chinese journal of radio science,2021,36(5):721-729. (in Chinese). DOI: 10.13443/j.cjors.2020060501

      High-gain and high-aperture-efficiency Fabry-Perot cavity antenna

      More Information
      • Received Date: June 04, 2020
      • Available Online: July 07, 2021
      • A high-gain Fabry-Perot (F-P) cavity antenna with non-uniform frequency selective surface (FSS) superstrate and non-uniform electromagnetic band gap (EBG) reflecting ground is presented. Based on leaky wave theory model, a non-uniform FSS superstrate and EBG ground are proposed for large-aperture F-P cavity antenna to control the attenuation constant α and phase constant β. The uniformity of the amplitude and phase distribution on the aperture field can be improved, at the same time the deterioration of antenna performance is reduced when it deviates from the center frequency. So that the antenna can achieve high gain and high aperture efficiency when its bandwidth is maintained. The diameter of the proposed circular F-P resonant cavity antenna is 6.6λ0. Simulation results show that the gain is 24.6 dBi, the aperture efficiency is 67.9%, the impedance bandwidth is 4.1% and the 3 dB gain bandwidth is 3.7%; the measured gain is 23.9 dBi, and the aperture efficiecy is 56.9%. The proposed antenna overcomes the limit on aperture efficiency and gain of conventional F-P cavity antennas due to the uniform distribution of the aperture field.
      • [1]
        徐刚, 施美友, 屈劲, 等. S波段宽带圆极化反射面天线口径合成阵列设计[J]. 电波科学学报,2015,30(4):723-728. doi: 10.13443/j.cjors.2014090702

        XU G, SHI M Y, QU J, et al. Design of an S-band wideband circular reflector aperture array used for spatial power combining[J]. Chinese journal of radio science,2015,30(4):723-728. (in Chinese) doi: 10.13443/j.cjors.2014090702
        [2]
        王凯旭, 黄衡. 一种圆极化透镜天线[J]. 电波科学学报,2018,33(4):387-391. doi: 10.13443/j.cjors.2018043004

        WANG K X, HUANG H. A circularly polarized lens antenna[J]. Chinese journal of radio science,2018,33(4):387-391. (in Chinese) doi: 10.13443/j.cjors.2018043004
        [3]
        JAMSHIDI-ZARMEHRI H, NESHATI M H. Design and development of high-gain SIW H-plane horn antenna loaded with waveguide, dipole array, and reflector nails using thin substrate[J]. IEEE transactions on antennas and propagation,2019,67(4):2813-2818. doi: 10.1109/TAP.2019.2896445
        [4]
        刘震国, 葛志晨. Fabry-Perot谐振天线研究综述[J]. 现代雷达,2009,31(9):70-75. doi: 10.3969/j.issn.1004-7859.2009.09.018

        LIU Z G, GE Z C. A review of Fabry-Perot resonator antenna[J]. Modern radar,2009,31(9):70-75. (in Chinese) doi: 10.3969/j.issn.1004-7859.2009.09.018
        [5]
        杨国辉, 杨鑫, 吴群, 等. 一种X波段小型化可调谐FSS设计[J]. 电波科学学报,2019,34(4):442-446. doi: 10.13443/j.cjors.2018110902

        YANG G H, YANG X, WU Q, et al. An X-band miniaturized tunable FSS design[J]. Chinese journal of radio science,2019,34(4):442-446. (in Chinese) doi: 10.13443/j.cjors.2018110902
        [6]
        SINGH A K, ABEGAONKAR M P, KOUL S K. High-gain and high-aperture-efficiency cavity resonator antenna using metamaterial superstrate[J]. IEEE antennas and wireless propagation letters,2017,16:2388-2391. doi: 10.1109/LAWP.2017.2719864
        [7]
        LIU W E I, CHEN Z N, SWEATHA D G. High-aperture-efficiency Fabry-Pérot cavity antenna using hybrid-mode metasurface[C]// The 13th European Conference on Antennas and Propagation (EuCAP). Krakow, 2019: 1-4.
        [8]
        WU Z, ZHANG W. Metallic compound air-fed array antennas for cost-effective microwave radio-link applications[J]. IEEE antennas and wireless propagation letters,2014,13:662-665. doi: 10.1109/LAWP.2014.2314306
        [9]
        LU Y, LIN Y. A hybrid approach for finite-size Fabry-Pérot antenna design with fast and accurate estimation on directivity and aperture efficiency[J]. IEEE transactions on antennas and propagation,2013,61(11):5395-5401. doi: 10.1109/TAP.2013.2279221
        [10]
        ZHOU L, CHEN X, DUAN X. Fabry-Pérot resonator antenna with high aperture efficiency using a double-layer nonuniform superstrate[J]. IEEE transactions on antennas and propagation,2018,66(4):2061-2066. doi: 10.1109/TAP.2018.2800761
        [11]
        HAYAT T, AFZAL M U, LALBAKHSH A, et al. Additively manufactured perforated superstrate to improve directive radiation characteristics of electromagnetic source[J]. IEEE access,2019,7:153445-153452. doi: 10.1109/ACCESS.2019.2948735
        [12]
        HAYAT T, AFZAL M U, LALBAKHSH A, et al. 3-D-printed phase-rectifying transparent superstrate for resonant-cavity antenna[J]. IEEE antennas and wireless propagation letters,2019,18(7):1400-1404. doi: 10.1109/LAWP.2019.2917767
        [13]
        LALBAKHSH A, AFZAL M U, ESSELLE K P, et al. Wideband near-field correction of a Fabry–Perot resonator antenna[J]. IEEE transactions on antennas and propagation,2019,67(3):1975-1980. doi: 10.1109/TAP.2019.2891230
        [14]
        AFZAL M U, ESSELLE K P, LALBAKHSH A. A methodology to design a low-profile composite-dielectric phase-correcting structure[J]. IEEE antennas and wireless propagation letters,2018,17(7):1223-1227. doi: 10.1109/LAWP.2018.2840087
        [15]
        AFZAL M U, ESSELLE K, ZEB B A. Dielectric phase-correcting structures for electromagnetic band gap resonator antennas[J]. IEEE transactions on antennas and propagation,2015,63(8):3390-3399. doi: 10.1109/TAP.2015.2438332
        [16]
        BURGHIGNOLI P, LOVAT G, CAPOLINO F, et al. Highly polarized, directive radiation from a Fabry-Pérot cavity leaky-wave antenna based on a metal strip grating[J]. IEEE transactions on antennas and propagation,2010,58(12):3873-3883. doi: 10.1109/TAP.2010.2078441
        [17]
        LOVAT G, BURGHIGNOLI P, JACKSON D R. Fundamental properties and optimization of broadside radiation from uniform leaky-wave antennas[J]. IEEE transactions on antennas and propagation,2006,54(5):1442-1452. doi: 10.1109/TAP.2006.874350
        [18]
        TAKAHASHI M, TAKADA J I, ANDO M, et al. A slot design for uniform aperture field distribution in single-layered radial line slot antennas[J]. IEEE transactions on antennas and propagation,1991,39(7):954-959. doi: 10.1109/8.86915
      • Related Articles

        [1]SU Chongyang, SHI Weizhong, WANG Yunlong, YANG Longquan, SHI Junqiang, WANG Yan, FENG Chenrui, WANG Yuesong. The influence of ionospheric non-uniformity on the detection area of HF bistatic sky-wave radar[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2025, 40(2): 286-293, 312. DOI: 10.12265/j.cjors.2025041
        [2]GAO Shuai, WONG Hang. A design of dual-band high-gain shared-aperture antenna[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2024, 39(6): 1051-1057. DOI: 10.12265/j.cjors.2023286
        [3]LIU Changqing, ZHANG Liang, WAN Zhiwei, YU Xingchuan, HUANG Zhixiang, WU Xianliang. A low profile high gain circularly polarized antenna based on metasurface[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2021, 36(1): 96-100. DOI: 10.13443/j.cjors.2019081501
        [4]SHAO Shuai, DU Guohong, WU Chuan. Design of high gain and wideband transmitarray[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2020, 35(5): 745-749. DOI: 10.13443/j.cjors.2019071901
        [5]YANG Guohui, YANG Xin, WU Qun, ZHANG Kuang, LI Yingsong. An X-band miniaturized tunable FSS design[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2019, 34(4): 442-446. DOI: 10.13443/j.cjors.2018110902
        [6]DANG Tao, TIAN Yin, WANG Lu, WANG Guangming, ZHENG Hongxing. Non-resonant multilayer cascading of frequency selective surface[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2018, 33(4): 463-469. DOI: 10.13443/j.cjors.2018040801
        [7]YAN Xuequan, REN Jiaying, ZHANG Desheng, JIANG Xunya. RCS performances of antenna FSS radome[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2018, 33(2): 126-131. DOI: 10.13443/j.cjors.2017120401
        [8]LI Bin, WANG Zhenzhan, ZHANG Shengwei, WANG Xinbiao, DONG Shuai, XIE Ying. A new method to fabricate large aperture free-standing polarized wire grids at microwave/millimeter wavelengths[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2015, 30(3): 565-570. DOI: 10.13443/j.cjors.2014061201
        [9]ZHANG Qinghong, LIAO Cheng, SHENG Nan, CHEN Linglu. Nonuniform mesh technique for parabolic equation[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2013, 28(4): 631-636.
        [10]WANG Wei, MA Yuehua, HAO Yanling. A new sidelobe suppression method for nonuniform linear array MIMO radar imaging[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2013, 28(3): 505-509.
      • Cited by

        Periodical cited type(1)

        1. 赵晓磊,刘宇峰,陈新伟,张文梅. 基于人工磁导体表面的低剖面Fabry-Perot谐振腔天线设计. 测试技术学报. 2022(02): 167-172 .

        Other cited types(1)

      Catalog

        Article views (702) PDF downloads (104) Cited by(2)
        Related

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return