The Editorial Board of Special Issue for "Computational Electromagnetics". Progress in computational electromagnetic methods[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2020, 35(1): 13-25.
doi: 10.13443/j.cjors.2019110301Reference format: |
The Editorial Board of Special Issue for "Computational Electromagnetics". Progress in computational electromagnetic methods[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2020, 35(1): 13-25. doi: 10.13443/j.cjors.2019110301 |
This paper briefly presents the development in computational electromagnetic methods. First, the development of computational electromagnetic methods is outlined. Then, the development of several recent representative technologies in computational electromagnetics are elaborated, including fast direct solver, non-conformal domain decomposition, and high-performance parallelization. Next, the advances in computing typical electromagnetic problems, including target-background composite problems, large-scale finite-period structures, and electromagnetic inverse problems, are presented. Finally, summary and outlook of computational electromagnetic methods are given.
[1] |
MACDONALD H M. The effect produced by an obstacle on a train of electric waves[J]. Philosophical transactions of the Royal Society of London, 1913, 212(484-496):299-337.
|
[2] |
UFIMTSEV P Y. Fundamentals of the physical theory of diffraction[M]. John Wiley & Sons, 2007.
|
[3] |
KLINE M, KAY I W. Electromagnetic theory and geoemtrical optics[M]. Intersciences Press, 1965.
|
[4] |
KELLER J B. Geometrical theory of diffraction[J]. JOSA, 1962, 52(2):116-130. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_7a379575619e026e83635460b63c7605
|
[5] |
KOUYOUMJIAN R G, PATHAK P H. A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface[J]. Proceedings of the IEEE, 1974, 62(11):1448-1461. doi: 10.1109/PROC.1974.9651
|
[6] |
YEE K. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE transactions on antennas and propagation, 1966, 14(3):302-307. doi: 10.1109/TAP.1966.1138693
|
[7] |
SILVESTER P. A general high-order finite-element analysis program waveguide[J]. IEEE transactions on microwave theory & techniques, 1969, 17(4):204-210. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4ffe483e05c4265d992eb5d85401a7ae
|
[8] |
MEI K, VAN BLADEL J. Scattering by perfectly-conducting rectangular cylinders[J]. IEEE transactions on antennas and propagation, 1963, 11(2):185-192. http://cn.bing.com/academic/profile?id=7407733f6b434db03923bffc27986681&encoded=0&v=paper_preview&mkt=zh-cn
|
[9] |
GAN H, CHEW W C. A discrete BCG-FFT algorithm for solving 3D inhomogeneous scatterer problems[J]. Journal of electromagnetic waves and applications, 1995, 9(10):1339-1357.
|
[10] |
COIFMAN R, ROKHLIN V, WANDZURA S. The fast multipole method for the wave equation:a pedestrian prescription[J]. IEEE antennas and propagation magazine, 1993, 35(3):7-12. doi: 10.1109/74.250128
|
[11] |
SONG J, LU C C, CHEW W C. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects[J]. IEEE transactions on antennas and propagation, 1997, 45(10):1488-1493. doi: 10.1109/8.633855
|
[12] |
SHENG X Q, JIN J M, SONG J M, et al. Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies[J]. IEEE transactions on antennas and propagation, 1998, 46(11):1718-1726. doi: 10.1109/8.736628
|
[13] |
LING H, CHOU R C, LEE S W. Shooting and bouncing rays:Calculating the RCS of an arbitrarily shaped cavity[J]. IEEE transactions on Antennas and propagation, 1989, 37(2):194-205. http://cn.bing.com/academic/profile?id=e0ae72a62d01922148488a8dd55fd479&encoded=0&v=paper_preview&mkt=zh-cn
|
[14] |
JIN J M, NI S S, LEE S W. Hybridization of SBR and FEM for scattering by large bodies with cracks and cavities[J]. IEEE transactions on antennas and propagation, 1995, 43(10):1130-1139. doi: 10.1109/8.467650
|
[15] |
JIN J M, LING F, CAROLAN S T, et al. A hybrid SBR/MoM technique for analysis of scattering from small protrusions on a large conducting body[J]. IEEE transactions on antennas and propagation, 1998, 46(9):1349-1357. doi: 10.1109/8.719979
|
[16] |
SHENG X Q, JIN J M, SONG J, et al. On the formulation of hybrid finite-element and boundary-integral methods for 3-D scattering[J]. IEEE transactions on antennas and propagation, 1998, 46(3):303-311. doi: 10.1109/8.662648
|
[17] |
LU C C, CHEW W C. A coupled surface-volume integral equation approach for the calculation of electromagnetic scattering from composite metallic and material targets[J]. IEEE transactions on antennas and propagation, 2000, 48(12):1866-1868. doi: 10.1109/8.901277
|
[18] |
HACKBUSCH W. A sparse matrix arithmetic based on H-matrices. part Ⅰ:introduction to H-matrices[J]. Computing, 1999, 62(2):89-108.
|
[19] |
ZHAO K, VOUVAKIS M N, LEE J F. The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems[J]. IEEE transactions on electromagnetic compatibility, 2005, 47(4):763-773. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ec89ed4f3694c880d066a2dbbd91141
|
[20] |
SHAEFFER J. Direct solve of electrically large integral equations for problem sizes to 1 M unknowns[J]. IEEE transactions on antennas and propagation, 2008, 56(8):2306-2313. doi: 10.1109/TAP.2008.926739
|
[21] |
CHAI W, JIAO D. An H2-matrix-based integral-equation solver of reduced complexity and controlled accuracy for solving electrodynamic problems[J]. IEEE transactions on antennas and propagation, 2009, 57(10):3147-3159. doi: 10.1109/TAP.2009.2028665
|
[22] |
WEI J G, PENG Z, LEE J F. A fast direct matrix solver for surface integral equation methods for electromagnetic wave scattering from non-penetrable targets[J]. Radio science, 2012, 47(5):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3c635e539d623c253fd5783d46f2fb2d
|
[23] |
RONG Z, JIANG M, CHEN Y P, et al. Fast direct solution of integral equations with modified HODLR structure for analyzing electromagnetic scattering problems[J]. IEEE transactions on antennas and propagation, 2019, 67(5):3288-3295. doi: 10.1109/TAP.2019.2896711
|
[24] |
GUO H, LIU Y, HU J, et al. A butterfly-based direct integral-equation solver using hierarchical LU factorization for analyzing scattering from electrically large conducting objects[J]. IEEE transactions on antennas and propagation, 2017, 65(9):4742-4750. doi: 10.1109/TAP.2017.2727511
|
[25] |
LIU H, JIAO D. Existence of H-matrix representations of the inverse finite-element matrix of electrodynamic problems and H-based fast direct finite-element solvers[J]. IEEE transactions on microwave theory and techniques, 2010, 58(12):3697-3709. http://cn.bing.com/academic/profile?id=9a066623f19e33ce8f6b2b80bd2b3c53&encoded=0&v=paper_preview&mkt=zh-cn
|
[26] |
ZHOU B, JIAO D. Direct finite-element solver of linear complexity for large-scale 3-D electromagnetic analysis and circuit extraction[J]. IEEE transactions on microwave theory and techniques, 2015, 63(10):3066-3080. doi: 10.1109/TMTT.2015.2472003
|
[27] |
YANG M L, LIU R Q, GAO H W, et al. On the H-LU-based fast finite element direct solver for 3-D scattering problems[J]. IEEE transactions on antennas and propagation, 2018, 66(7):3792-3797. doi: 10.1109/TAP.2018.2823774
|
[28] |
DESPRÉS B. A domain decomposition method for the harmonic Maxwell equations[J]. Iterative methods in linear algebra, 1992:475-484.
|
[29] |
LEE S C, VOUVAKIS M N, LEE J F. A non-overlapping domain decomposition method with non-matching grids for modeling large finite antenna arrays[J]. Journal of computational physics, 2005, 203(1):1-21. http://cn.bing.com/academic/profile?id=6690faf23042ba71c7754bae2c421691&encoded=0&v=paper_preview&mkt=zh-cn
|
[30] |
VOUVAKIS M N, CENDES Z, LEE J F. A FEM domain decomposition method for photonic and electromagnetic band gap structures[J]. IEEE transactions on antennas and propagation, 2006, 54(2):721-733. doi: 10.1109/TAP.2005.863095
|
[31] |
LU Z Q, AN X, HONG W. A fast domain decomposition method for solving three-dimensional large-scale electromagnetic problems[J]. IEEE transactions on antennas and propagation, 2008, 56(8):2200-2210. doi: 10.1109/TAP.2008.926755
|
[32] |
PENG Z, LEE J F. Non-conformal domain decomposition method with mixed true second order transmission condition for solving large finite antenna arrays[J]. IEEE transactions on antennas and propagation, 2011, 59(5):1638-1651. doi: 10.1109/TAP.2011.2123067
|
[33] |
FARHAT C, ROUX F X. A method of finite element tearing and interconnecting and its parallel solution algorithm[J]. International journal for numerical methods in engineering, 1991, 32(6):1205-1227. doi: 10.1002/nme.1620320604
|
[34] |
WOLFE C T, NAVSARIWALA U, GEDNEY S D. A parallel finite-element tearing and interconnecting algorithm for solution of the vector wave equation with PML absorbing medium[J]. IEEE transactions on antennas and propagation, 2000, 48(2):278-284. http://cn.bing.com/academic/profile?id=0323d9007c5e4e5684a8d67f62751da6&encoded=0&v=paper_preview&mkt=zh-cn
|
[35] |
LI Y J, JIN J M. A vector dual-primal finite element tearing and interconnecting method for solving 3-D large-scale electromagnetic problems[J]. IEEE transactions on antennas and propagation, 2006, 54(10):3000-3009. doi: 10.1109/TAP.2006.882191
|
[36] |
LI Y J, JIN J M. A new dual-primal domain decomposition approach for finite element simulation of 3-D large-scale electromagnetic problems[J]. IEEE transactions on antennas and propagation, 2007, 55(10):2803-2810. doi: 10.1109/TAP.2007.905954
|
[37] |
XUE M F, JIN J M. Nonconformal FETI-DP methods for large-scale electromagnetic simulation[J]. IEEE transactions on antennas and propagation, 2012, 60(9):4291-4305. doi: 10.1109/TAP.2012.2207076
|
[38] |
BRENNAN C, CULLEN P, CONDON M. A novel iterative solution of the three dimensional electric field integral equation[J]. IEEE transactions on antennas and propagation, 2004, 52(10):2781-2785. doi: 10.1109/TAP.2004.834405
|
[39] |
LI W D, HONG W, ZHOU H X. Integral equation-based overlapped domain decomposition method for the analysis of electromagnetic scattering of 3D conducting objects[J]. Microwave and optical technology letters, 2007, 49(2):265-274. doi: 10.1002/mop.22110
|
[40] |
LI W D, ZHOU H X, WEILAND T. An overlapped domain decomposition method for modified N-Müller formulation[J]. IEEE antennas and wireless propagation letters, 2008, 7:710-713. doi: 10.1109/LAWP.2008.2006695
|
[41] |
PENG Z, WANG X C, LEE J F. Integral equation based domain decomposition method for solving electromagnetic wave scattering from non-penetrable objects[J]. IEEE transactions on antennas and propagation, 2011, 59(9):3328-3338. doi: 10.1109/TAP.2011.2161542
|
[42] |
HU J, ZHAO R, TIAN M, et al. Domain decomposition method based on integral equation for solution of scattering from very thin, conducting cavity[J]. IEEE transactions on antennas and propagation, 2014, 62(10):5344-5348. doi: 10.1109/TAP.2014.2341701
|
[43] |
JIANG M, CHEN Y P, LI D W, et al. A flexible SIE-DDM for EM scattering by large and multiscale conducting objects[J]. IEEE transactions on antennas and propagation, 2018, 66(12):7466-7471. doi: 10.1109/TAP.2018.2867063
|
[44] |
ZHAO R, HU J, ZHAO H, et al. Solving EM scattering from multiscale coated objects with integral equation domain decomposition method[J]. IEEE antennas and wireless propagation letters, 2015, 15:742-745. http://cn.bing.com/academic/profile?id=dbb04b159c3959be0a0816e3707b307a&encoded=0&v=paper_preview&mkt=zh-cn
|
[45] |
JIANG M, HU J, TIAN M, et al. An enhanced preconditioned JMCFIE-DDM for analysis of electromagnetic scattering by composite objects[J]. IEEE antennas and wireless propagation letters, 2015, 14:1362-1365. doi: 10.1109/LAWP.2015.2406954
|
[46] |
PENG Z, LIM K H, LEE J F. A discontinuous Galerkin surface integral equation method for electromagnetic wave scattering from nonpenetrable targets[J]. IEEE transactions on antennas and propagation, 2013, 61(7):3617-3628. doi: 10.1109/TAP.2013.2258394
|
[47] |
PENG Z, HIPTMAIR R, SHAO Y, et al. Domain decomposition preconditioning for surface integral equations in solving challenging electromagnetic scattering problems[J]. IEEE transactions on antennas and propagation, 2016, 64(1):210-223. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6cdb57c85cfdc4f09a98606f6eda81e2
|
[48] |
KONG B B, SHENG X Q. A discontinuous Galerkin surface integral equation method for scattering from multiscale homogeneous objects[J]. IEEE transactions on antennas and propagation, 2018, 66(4):1937-1946. doi: 10.1109/TAP.2018.2803133
|
[49] |
YANG M L, GAO H W, SHENG X Q. Parallel domain-decomposition-based algorithm of hybrid FE-BI-MLFMA method for 3-D scattering by large inhomogeneous objects[J]. IEEE transactions on antennas and propagation, 2013, 61(9):4675-4684. doi: 10.1109/TAP.2013.2271232
|
[50] |
YANG M L, GAO H W, SONG W, et al. An effective domain-decomposition-based preconditioner for the FE-BI-MLFMA method for 3D scattering problems[J]. IEEE transactions on antennas and propagation, 2014, 62(4):2263-2268. doi: 10.1109/TAP.2014.2300159
|
[51] |
GAO H W, YANG M L, SHENG X Q. Nonconformal FETI-DP domain decomposition methods for FE-BI-MLFMA[J]. IEEE transactions on antennas and propagation, 2016, 64(8):3521-3532. doi: 10.1109/TAP.2016.2576476
|
[52] |
GAO H W, PENG Z, SHENG X Q. A geometry-aware domain decomposition preconditioning for hybrid finite element-boundary integral method[J]. IEEE transactions on antennas and propagation, 2017, 65(4):1875-1885. doi: 10.1109/TAP.2017.2670533
|
[53] |
JIA P H, HU J, CHEN Y P, et al. H-matrices compressed multiplicative Schwarz preconditioner for nonconformal FEM-BEM-DDM[J]. IEEE transactions on antennas and propagation, 2018, 66(5):2691-2696. doi: 10.1109/TAP.2018.2809697
|
[54] |
JIA P H, LEI L, HU J, et al. Twofold domain decomposition method for the analysis of multiscale composite structures[J]. IEEE transactions on antennas and propagation, 2019, 67(9):6090-6103. doi: 10.1109/TAP.2019.2925120
|
[55] |
GUIFFAUT C, MAHDJOUBI K. A parallel FDTD algorithm using the MPI library[J]. IEEE antennas and propagation magazine, 2001, 43(2):94-103. doi: 10.1109/74.924608
|
[56] |
LI Y J, JIN J M. Parallel implementation of the FETI-DPEM algorithm for general 3D EM simulations[J]. Journal of computational physics, 2009, 228(9):3255-3267. doi: 10.1016/j.jcp.2009.01.029
|
[57] |
WANG W J, XU R, LI H Y, et al. Massively parallel simulation of large-scale electromagnetic problems using one high-performance computing scheme and domain decomposition method[J]. IEEE transactions on electromagnetic compatibility, 2017, 59(5):1523-1531. doi: 10.1109/TEMC.2017.2656891
|
[58] |
LIU R Q, YANG M L, GAO H W, et al. Parallel FEM-DDM with BD-SGS preconditioner for 3D scattering by large inhomogeneous objects[C]//2019 IEEE International Conference on Computational Electromagnetics (ICCEM), 2019: 1-3.
|
[59] |
VELAMPARAMBIL S, CHEW W C, SONG J M. 10 million unknowns:is it that big?[J]. IEEE antennas and propagation magazine, 2003, 45(2):43-58. doi: 10.1109/MAP.2003.1203119
|
[60] |
PAN X M, SHENG X Q. A sophisticated parallel MLFMA for scattering by extremely large targets[J]. IEEE antennas and propagation magazine, 2008, 50(3):129-138. doi: 10.1109/MAP.2008.4563583
|
[61] |
PAN X M, PI W C, YANG M L, et al. Solving problems with over one billion unknowns by the MLFMA[J]. IEEE transactions on antennas and propagation, 2012, 60(5):2571-2574. doi: 10.1109/TAP.2012.2189746
|
[62] |
ERGULÖ Ü, GUREL L. A hierarchical partitioning strategy for an efficient parallelization of the multilevel fast multipole algorithm[J]. IEEE transactions on antennas and propagation, 2009, 57(6):1740-1750. doi: 10.1109/TAP.2009.2019913
|
[63] |
MICHIELS B, FOSTIER J, BOGAERT I, et al. Full-wave simulations of electromagnetic scattering problems with billions of unknowns[J]. IEEE transactions on antennas and propagation, 2014, 63(2):796-799. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e417d38e9e49d175cda9186265ade072
|
[64] |
YANG M L, WU B Y, GAO H W, et al. A ternary parallelization approach of MLFMA for solving electromagnetic scattering problems with over 10 billion unknowns[J]. IEEE transactions on antennas and propagation, 2019, 67(11):6965-6978. doi: 10.1109/TAP.2019.2927660
|
[65] |
TABOADA J M, LANDESA L, OBELLEIRO F, et al. High scalability FMM-FFT electromagnetic solver for supercomputer systems[J]. IEEE antennas and propagation magazine, 2009, 51(6):20-28. doi: 10.1109/MAP.2009.5433091
|
[66] |
TABOADA J M, ARAUJO M G, BERTOLO J M, et al. MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics[J]. Progress in electromagnetics research, 2010, 105:15-30. doi: 10.2528/PIER10041603
|
[67] |
CHEN J, WANG J. Numerical simulation using HIE-FDTD method to estimate various antennas with fine scale structures[J]. IEEE transactions on antennas and propagation, 2007, 55(12):3603-3612. doi: 10.1109/TAP.2007.910338
|
[68] |
CHEN R S, DU L, YE Z, et al. An efficient algorithm for implementing the Crank-Nicolson scheme in the mixed finite-element time-domain method[J]. IEEE transactions on antennas and propagation, 2009, 57(10):3216-3222. doi: 10.1109/TAP.2009.2028675
|
[69] |
HE Q, GAN H, JIAO D. Explicit time-domain finite-element method stabilized for an arbitrarily large time step[J]. IEEE transactions on antennas and propagation, 2012, 60(11):5240-5250. doi: 10.1109/TAP.2012.2207666
|
[70] |
CHEN J, LIU Q H. Discontinuous Galerkin time-domain methods for multiscale electromagnetic simulations:a review[J]. Proceedings of the IEEE, 2013, 101(2):242-254. http://cn.bing.com/academic/profile?id=c322dc0dc91c84fa08f2ed49ee051702&encoded=0&v=paper_preview&mkt=zh-cn
|
[71] |
葛德彪, 魏兵.电磁场时域非连续伽辽金法[M].北京:科学出版社, 2019.
|
[72] |
HIRONO T, LUI W, SEKI S, et al. A three-dimensional fourth-order finite-difference time-domain scheme using a symplectic integrator propagator[J]. IEEE transactions on microwave theory and techniques, 2001, 49(9):1640-1648. doi: 10.1109/22.942578
|
[73] |
SHAO Z, WEI G W, ZHAO S. DSC time-domain solution of Maxwell's equations[J]. Journal of computational physics, 2003, 189(2):427-453. http://cn.bing.com/academic/profile?id=af96c771630c84e0f8926c2ad7c5740a&encoded=0&v=paper_preview&mkt=zh-cn
|
[74] |
SHA W E I, HUANG Z, CHEN M, et al. Survey on symplectic finite-difference time-domain schemes for Maxwell's equations[J]. IEEE transactions on antennas and propagation, 2008, 56(2):493-500. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ba11bddc3d0e8e91cf0b9a1c29f819a9
|
[75] |
WANG H, WU B, HUANG Z, et al. A symplectic FDTD algorithm for the simulations of lossy dispersive materials[J]. Computer physics communications, 2014, 185(3):862-872. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ab1b3a15ca84b92afd7ffbe91e537cef
|
[76] |
CHEN Q, QIN H, LIU J, et al. Canonical symplectic structure and structure-preserving geometric algorithms for Schrödinger-Maxwell systems[J]. Journal of computational physics, 2017, 349:441-452. doi: 10.1016/j.jcp.2017.08.033
|
[77] |
CARLUCCIO G, ALBANI M, PATHAK P H. Uniform asymptotic evaluation of surface integrals with polygonal integration domains in terms of UTD transition functions[J]. IEEE transactions on antennas and propagation, 2010, 58(4):1155-1163. doi: 10.1109/TAP.2010.2041171
|
[78] |
WU Y M, JIANG L J, SHA W E I, et al. The numerical steepest descent path method for calculating physical optics integrals on smooth conducting quadratic surfaces[J]. IEEE transactions on antennas and propagation, 2013, 61(8):4183-4193. doi: 10.1109/TAP.2013.2259788
|
[79] |
WU Y M, JIANG L J, CHEW W C, et al. The contour deformation method for calculating the high-frequency scattered field by the Fock current on the surface of the 3-D convex cylinder[J]. IEEE transactions on antennas and propagation, 2015, 63(5):2180-2190. doi: 10.1109/TAP.2015.2407411
|
[80] |
CHEN X, HE S Y, YU D F, et al. Ray-tracing method for creeping waves on arbitrarily shaped nonuniform rational B-splines surfaces[J]. JOSA A, 2013, 30(4):663-670. doi: 10.1364/JOSAA.30.000663
|
[81] |
付松.介质涂覆目标表面爬行波寻迹及其电磁绕射建模方法研究[D].武汉: 武汉大学, 2015.
FU S. Research on creeping wave tracing and modeling algorithms of electromagnetic diffraction on dielectric-coated target surfaces[D]. Wuhan: Wuhan University, 2015.(in Chinese)
|
[82] |
CHEN R S, PING X W, YUNG E K N, et al. Application of diagonally perturbed incomplete factorization preconditioned conjugate gradient algorithms for edge finite-element analysis of Helmholtz equations[J]. IEEE transactions on antennas and propagation, 2006, 54(5):1604-1608. doi: 10.1109/TAP.2006.874358
|
[83] |
YAN S, JIN J M, NIE Z P. EFIE analysis of low-frequency problems with loop-star decomposition and Calderón multiplicative preconditioner[J]. IEEE transactions on antennas and propagation, 2009, 58(3):857-867. doi: 10.1109/TAP.2009.2039336
|
[84] |
FAN Z H, LIU Z W, DING D Z, et al. Preconditioning matrix interpolation technique for fast analysis of scattering over broad frequency band[J]. IEEE transactions on antennas and propagation, 2010, 58(7):2484-2487. doi: 10.1109/TAP.2010.2046841
|
[85] |
JOHNSON J T. A study of the four-path model for scattering from an object above a half space[J]. Microwave and optical technology letters, 2001, 30(2):130-134. doi: 10.1002/mop.1242
|
[86] |
ZAHN D, SARABANDI K. Numerical simulation of scattering from rough surfaces using a fast far-field iterative physical optics approach[C]//IEEE Antennas and Propagation Society International Symposium, 1999. National Radio Science Meeting, 1999, 1: 530-533.
|
[87] |
YANG W, QI C. A bi-iteration model for electromagnetic scattering from a 3D object above a 2D rough surface[J]. Electromagnetics, 2015, 35(3):190-204. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/02726343.2015.1005203
|
[88] |
WANG R, GUO L X, LI J, et al. Investigation on transient electromagnetic scattering from a randomly rough surface and the perfect electric conductor target with an arbitrary cross section above it[J]. Science in China series G:physics, mechanics and astronomy, 2009, 52(5):665-675. doi: 10.1007/s11433-009-0043-z
|
[89] |
XU R W, GUO L X, HE H J, et al. Study on scattering from multilayer rough surfaces with an object buried with FEM/PML[J]. Microwave and optical technology letters, 2016, 58(2):429-433. doi: 10.1002/mop.29584
|
[90] |
KUANG L, JIN Y Q. Bistatic scattering from a three-dimensional object over a randomly rough surface using the FDTD algorithm[J]. IEEE transactions on antennas and propagation, 2007, 55(8):2302-2312. doi: 10.1109/TAP.2007.901846
|
[91] |
DOGARU T, CARIN L. Time-domain sensing of targets buried under a rough air-ground interface[J]. IEEE transactions on antennas and propagation, 1998, 46(3):360-372. doi: 10.1109/8.662655
|
[92] |
YE H, JIN Y Q. A hybrid analytic-numerical algorithm of scattering from an object above a rough surface[J]. IEEE transactions on geoscience and remote sensing, 2007, 45(5):1174-1180. doi: 10.1109/TGRS.2007.892609
|
[93] |
ZHANG X Y, SHENG X Q. Highly efficient hybrid method for monostatic scattering by objects on a rough surface[J]. IET microwaves, antennas & propagation, 2010, 4(10):1597-1604. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=33d46e0bdbfb9bac71ea70362293c507
|
[94] |
LU W B, CUI T J, QIAN Z G, et al. Accurate analysis of large-scale periodic structures using an efficient sub-entire-domain basis function method[J]. IEEE transactions on antennas and propagation, 2004, 52(11):3078-3085. doi: 10.1109/TAP.2004.835143
|
[95] |
LU W B, CUI T J, ZHAO H. Acceleration of fast multipole method for large-scale periodic structures with finite sizes using sub-entire-domain basis functions[J]. IEEE transactions on antennas and propagation, 2007, 55(2):414-421. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=54784c262315d3239bb9a6a501a2082e
|
[96] |
XIANG W, XIONG T, LU W B, et al. New accurate subentire-domain basis functions method for the analysis of large-scale finite periodic structures with electrically connected cells[J]. IEEE transactions on antennas and propagation, 2018, 67(3):2017-2022. http://cn.bing.com/academic/profile?id=43ac9fda6bec6344c474cd226d29b457&encoded=0&v=paper_preview&mkt=zh-cn
|
[97] |
SU J, XU X, HU B. Hybrid PMM-MoM method for the analysis of finite periodic structures[J]. Journal of electromagnetic waves and applications, 2011, 25(2-3):267-282. doi: 10.1163/156939311794362867
|
[98] |
SHAO H, HU J, LU W, et al. Analyzing large-scale arrays using tangential equivalence principle algorithm with characteristic basis functions[J]. Proceedings of the IEEE, 2012, 101(2):414-422. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9aea00a5906e7a62d647556edfbe76fd
|
[99] |
HABASHY T M, MITTRA R. On some inverse methods in electromagnetics[J]. Journal of electromagnetic waves and applications, 1987, 1(1):25-58. doi: 10.1163/156939387X00081
|
[100] |
BORN M, WOLF E. Principles of optics:electromagnetic theory of propagation, interference and diffraction of light[M]. 7th ed. Cambridge University Press, 1999.
|
[101] |
CHEW W C, WANG Y M. Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method[J]. IEEE transactions on medical imaging, 1990, 9(2):218-225. http://cn.bing.com/academic/profile?id=f6fd37e4cdcc14fdf5bf6839ddd50b18&encoded=0&v=paper_preview&mkt=zh-cn
|
[102] |
VAN DEN BERG P M, KLEINMAN R E. A contrast source inversion method[J]. Inverse problems, 1997, 13(6):1607. doi: 10.1088/0266-5611/13/6/013
|
[103] |
TARANTOLA A. Inverse problem theory and methods for model parameter estimation[M]. SIAM, 2005.
|
[104] |
HABASHY T M, ABUBAKAR A. A general framework for constraint minimization for the inversion of electromagnetic measurements[J]. Progress in electromagnetics research, 2004, 46:265-312. doi: 10.2528/PIER03100702
|
1. |
黄力,陈新宇,唐波,唐嘉晖,廖梓榕,刘鹏. 基于改进矩量法的风电机无源干扰快速计算. 高电压技术. 2024(02): 737-748 .
![]() | |
2. |
毛嵩,黎小娇,曾霞,高阳春,雷剑梅,易泓伶. 车载手机无线充电模块对人体电磁辐射安全性的仿真评估. 现代应用物理. 2024(01): 141-149 .
![]() | |
3. |
张慧雯,陈宇浩,黄晓伟,盛新庆. 基于多区域面积分方程的电大非均匀等离子体电磁特性高效计算方法. 电波科学学报. 2024(01): 26-38 .
![]() | |
4. |
商城,徐志明,张杨,张楷煜,吴其华,朱义奇,艾小锋. 空中目标动态电磁散射数据仿真系统设计与实现. 现代防御技术. 2024(02): 163-171 .
![]() | |
5. |
刘俊,任杰,赤丰华,罗世彬,郑盛贤,宋佳文. 局部外形参数对高速飞行器的RCS影响. 系统工程与电子技术. 2024(11): 3690-3702 .
![]() | |
6. |
李斌,徐立,王浩,尹俊辉,胡权,胡玉禄,杨中海. 电磁计算与电磁工业软件. 电子科技大学学报. 2024(06): 803-815+802 .
![]() | |
7. |
Cheng-Wei Zhang,Zhi-Qin Zhao,Wei Yang,Li-Lai Zhou,Hai-Yu Zhu. Electromagnetic scattering and imaging simulation of extremely large-scale sea-ship scene based on GPU parallel technology. Journal of Electronic Science and Technology. 2024(02): 18-25 .
![]() |
|
8. |
刘兵,王茂琰,张世田,徐彤,李海龙,吴健. 有限元方法研究精细地-电离层波导VLF波传播特性. 地球物理学报. 2023(05): 1820-1828 .
![]() | |
9. |
郑文军,杨伟,周礼来. 基于GPU并行技术的超大型海面舰船电磁散射仿真. 电子科技大学学报. 2023(04): 549-554 .
![]() | |
10. |
刘彻,杨恺乔,鲍江涵,俞文明,游检卫,李廉林,崔铁军. 智能电磁计算的若干进展. 雷达学报. 2023(04): 657-683 .
![]() | |
11. |
金亮,曹佳豪,杨庆新,王艳阳. 一种汽车风扇驱动电路辐射电场的电磁兼容性预测方法. 仪器仪表学报. 2022(02): 156-165 .
![]() | |
12. |
张慧雯,黄晓伟,吴比翼,盛新庆. 一种基于不连续伽辽金方法求解多区域目标散射问题的优化预处理器. 电波科学学报. 2022(03): 411-418 .
![]() | |
13. |
王雪松,李健兵,徐丰,李刚,程强. 电磁空间信息资源的认知与利用. 中国科学基金. 2021(05): 682-687 .
![]() |