Reference format: | WU Yumao, JIN Yaqiu. The modern high frequency methods for solving electromagnetic scattering problems[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2020, 35(2): 192-204. doi: 10.13443/j.cjors.2019090205 |
[1] |
MAXWELL J C. A dynamical theory of the electromagnetic field[J]. Philosophical transactions of the Royal Society of London, 1865:459-512. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_math-ph%2f0311034
|
[2] |
HEAVISIDE O. Electromagnetic theory[M]. Cosimo, Inc., 2008.
|
[3] |
CHEW W C. Waves and fields in inhomogeneous media[M]. New York:IEEE Press, 1995.
|
[4] |
KONG J A. Electromagnetic wave theory[M]. New York:Wiley-Interscience, 1990.
|
[5] |
KNOTT E F, SHAEFFER J F, TULEY M T. Radar cross section[M]. Norwood:Artech House, 1993.
|
[6] |
BALANIS C A. Antenna theory:analysis and design[M]. 3rd ed. New York:John Wiley and Sons, 2012.
|
[7] |
DATTA S. Quantum transport:atom to transistor[M]. Cambridge University Press, 2005.
|
[8] |
CAI W. Computational methods for electromagnetic phenomena:electrostatics in solvation, scattering, and electron transport[M]. Cambridge:Cambridge University Press, 2013.
|
[9] |
GARRISON J, CHIAO R. Quantum optics[M]. Oxford University Press, 2014.
|
[10] |
TANG L, KONG J A, SHIN B. Theory of microwave remote sensing[M]. New York:John Wiley, 1985.
|
[11] |
JIN Y Q. Electromagnetic scattering modelling for quantitative remote sensing[M]. Singapore:World Science Press, 2000.
|
[12] |
HARRINGTON R F. Field computation by moment method[M]. New York:Macmillan, 1968.
|
[13] |
JIN J M. The finite element method in electromagnetics[M]. 3rd ed. Hoboken:Wiley-IEEE Press, 2014.
|
[14] |
TAFLOVE A, HAGNESS S C. Computational electrodynamics:the finite-difference time-domain method[M]. 3rd ed. Boston:Artech House, 2015.
|
[15] |
SONG J M, LU C C, CHEW W C. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects[J]. IEEE transactions on antennas and propagation, 1997, 45(10):1488-1493. doi: 10.1109/8.633855
|
[16] |
CHEW W C, JIN J M, MICHIELSSEN E, et al. Fast and efficient algorithms incomputational electromagnetics[M]. Boston:Artech House, 2001.
|
[17] |
MACDONALD H M. The effect produced by an obstacle on a train of electric waves[J]. Philosophical transactions of the Royal Society of London, series A, Math. Phys. Sci., 1913, 212:299-337. http://cn.bing.com/academic/profile?id=370c12fa010249cc9b17e55694e7da02&encoded=0&v=paper_preview&mkt=zh-cn
|
[18] |
UFIMTSEV P Y. Backscatter[M]. New York:John Wiley and Sons, 2005.
|
[19] |
UFIMTSEV P Y. Fundamentals of the physical theory of diffraction[M]. New York:John Wiley and Sons, 2007.
|
[20] |
MITZNER K M. Incremental length diffraction coefficients[R]. Tech. Rep. No. AFAL-TR-73-296, 1974.
|
[21] |
SHORE R A, YAGHJIAN A D. Incremental diffraction coefficients for planar surfaces[J]. IEEE transactions on antennas and propagation, 1988, 36(1):55-70. doi: 10.1109/8.1075
|
[22] |
HANSEN T B, SHORE R A. Incremental length diffraction coefficients for the shadow boundary of a convex cylinder[J]. IEEE transactions on antennas propagation, 1998, 46(10):1458-1466. doi: 10.1109/8.725277
|
[23] |
YAGHJIAN A D, SHORE R A, WOODWORTH M B. Shadow boundary incremental length diffraction coefficients for perfectly conducting smooth, convex surfaces[J]. Radio science, 1996, 31(12):1681-1695. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8aad00b51fb39ab0a377e60b634d6539
|
[24] |
KELLER J B. Geometrical theory of diffraction[J]. Journal of the Optical Society of America, 1962, 52(2):116-130. doi: 10.1364/JOSA.52.000116
|
[25] |
JAMES G L. Geometrical theory of diffraction for electromagnetic waves[M]. Stevenage:Peregrinus, 1980.
|
[26] |
KOUYOUMJIAN R G, PATHAK P H. A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface[J]. Proceedings of IEEE, 1974, 62(11):1448-1461. doi: 10.1109-PROC.1974.9651/
|
[27] |
LEE S W, DESCHAMPS G A. A uniform asymptotic theory of electromagnetic diffraction by a curved wedge[J]. IEEE transactions on antennas and propagation, 1976, 24(1):25-34. doi: 10.1109/TAP.1976.1141283
|
[28] |
KOUYOUMJIAN R G. Asymptotic high-frequency methods[J]. Proceedings of IEEE, 1965, 53(8):864-876. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0220998117/
|
[29] |
PATHAK P H. High-frequency techniques for antenna analysis[J]. Proceedings of IEEE, 1992, 80(1):44-65. http://cn.bing.com/academic/profile?id=d2faaea55c29cc5e50c3c19541264ed2&encoded=0&v=paper_preview&mkt=zh-cn
|
[30] |
BOROVIKOV V A. Uniform stationary phase method[M]. London:Institution of Electrical Engineers, 1994.
|
[31] |
CONDE O M, P'EREZ J, C'ATEDRA M F. Stationary phase method application for the analysis of radiation of complex 3-D conducting structures[J]. IEEE transactions on antennas and propagation, 2001, 49(5):724-731. doi: 10.1109/8.929626
|
[32] |
CARLUCCIO G, ALBANI M, PATHAK P H. Uniform asymptotic evaluation of surface integrals with polygonal integration domains in terms of UTD transition functions[J]. IEEE transactions on antennas propagation, 2010, 58(4):1155-1163. doi: 10.1109/TAP.2010.2041171
|
[33] |
SOMMERFELD A. Mathematische theorie der diffraction[J]. Mathematische annalen, 1896, 47(319):317-374.(in German) http://cn.bing.com/academic/profile?id=ad8bc9e3daf6ef80f5251229fe780949&encoded=0&v=paper_preview&mkt=zh-cn
|
[34] |
FOCK V A. The distributions of currents induced by a plane wave on the surface of a conductor[J]. Acad. Sci. USSR. J. Phys., 1946, 10:130-136. https://mathscinet.ams.org/mathscinet-getitem?mr=17661
|
[35] |
KLINE M. Mathematical theory of optics[J]. Brown University Notes, Providence, RI, 1944.
|
[36] |
LING H, CHOU R C, LEE S W. Shooting and bouncing rays:calculating the RCS of anarbitrarily shaped cavity[J]. IEEE transactions on antennas and propagation, 1989, 37(2):194-205. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=18706
|
[37] |
LEE S W, MITTRA R. Fourier transform of a polygonal shape function and its application in electromagnetics[J]. IEEE transactions on antennas and propagation, 1983, 31(1):99-103. doi: 10.1109/TAP.1983.1142981
|
[38] |
GORDON W B. High-frequency approximations to the physical optics scattering integral[J]. IEEE transactions on antennas and propagation, 1994, 42(3):427-432. doi: 10.1109/8.280733
|
[39] |
ENGQUIST B, FATEMI E, OSHER S. Numerical solution of the high frequency asymptotic expansion for the scalar wave equation[J]. Journal of computational physics, 1995, 120(1):145-155. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ZSbbOPTIOEpHBn13PNFHvflS3LiuEMVa1JodA49BDH4=
|
[40] |
ENGQUIST B, RUNBORG O. Computational high frequency wave propagation[J]. Acta numerica, 2003, 12:181-266. doi: 10.1017/S0962492902000119
|
[41] |
WONG R. Asymptotic approximations of integrals[J]. New York:SIAM, 2001. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_math%2f9310223
|
[42] |
ABRAMOWITZ M, STEGUN I A. Handbook of mathematical functions[M]. New York:Dover Publications, 1972.
|
[43] |
JOSEF S, ROLAND B. Introduction to numerical analysis[M]. New York:Springer-Verlag, 1980.
|
[44] |
ASHEIM A, HUYBRECHS D. Asymptotic analysis of numerical steepest descent with path approximations[J]. Foundations of computational mathematics, 2010, 10(6):647-671. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=99b870f93cd143b6ab4058b1619aa237
|
[45] |
BONDIA F V, FERRANDO-BATALLER M, VALERO-NOGUEIRA A. A new fast physical optics for smooth surfaces by means of a numerical theory of diffraction[J]. IEEE transactions on antennas and propagation, 2010, 58(3):773-789. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=08c582bebba159b6aa788a34d5f619b4
|
[46] |
ZHANG J, XU B, CUI T J. An alternative treatment of saddle stationary phase points in physical optics for smooth surfaces[J]. IEEE transactions on antennas propagation, 2014, 62(2):986-991. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8c3633dc8d5f40640019ba7d1289bec8
|
[47] |
WU Y L, JIANG J, CHEW W C. An efficient method for computing highly oscillatory physical optics integral[J]. Progress in electromagnetics research, 2012, 127:211-257. doi: 10.2528/PIER12022308
|
[48] |
WU Y M, JIANG L J, CHEW W C. An efficient method for highly oscillatory physical optics integrals[C]//IEEE International Symposium on Antennas and Propagation, 2012.
|
[49] |
WU Y M, JIANG L J, SHA W, et al. The numerical steepest descent path method for calculating physical optics integrals on smooth conducting surfaces[J]. IEEE transactions on antennas propagation, 2013, 61(8):4183-4193. doi: 10.1109/TAP.2013.2259788
|
[50] |
WU Y M, JIANG L J, CHEW W C. Computing highly oscillatory physical optics integral on the polygonal domain by an efficient numerical steepest descent path method[J]. Journal of computational physics, 2013, 236:408-425. doi: 10.1016/j.jcp.2012.10.052
|
[51] |
WU Y M, JIANG L, CHEW W C. The contour deformation method for calculating the high frequency scattered fields by the Fock current on the surface of the 3-D convex cylinder[C]//2014 IEEE Antennas and Propagation Society International Symposium (APSURSI). Memphis, July 6-11, 2014.
|
[52] |
WU Y M, JIANG L J, CHEW W C, et al. The contour deformation method for calculating the high frequency scattered field by the Fock current on the surface of the 3-D convex cylinder[J]. IEEE transactions on antennas and propagation, 2015, 63(5):2180-2190. doi: 10.1109/TAP.2015.2407411
|
[53] |
PERREY-DEBAIN E, TREVELYAN J, BETTESS P. Wave boundary elements:a theoretical overview presenting applications in scattering of short waves[J]. Engineering analysis with boundary elements, 2004, 28(2):131-141. http://cn.bing.com/academic/profile?id=033dd67e780835a944175ebaf97c4421&encoded=0&v=paper_preview&mkt=zh-cn
|
[54] |
ENGQUIST B, FOKAS A, HAIRER E, et al. Highly oscillatory problems[R]. London Mathematical Society Lecture Note Series, Cambridge University Press, 2009.
|
[55] |
CHANDLER S N, LANGDON S. Acoustic scattering: high frequency boundary element methods and unified transform methods[M]//FOKAS A S, PELLONI B. Unified transform for boundary value problems: applications and advances. New York: SIAM, 2015.
|
[56] |
CHENG H, CRUTCHFIELD W Y, GIMBUTAS Z, et al. A wideband fast multipole method for the Helmholtz equation in three dimensions[J]. Journal of computational physics, 2006, 216(1):300-325. http://cn.bing.com/academic/profile?id=b8a1efa98c45c4faafe5fb97716f402b&encoded=0&v=paper_preview&mkt=zh-cn
|
[57] |
BRUNO O P. Fast, high-order, high-frequency integral methods for computational acoustics and electromagnetics[M]. Berlin:Springer, 2003.
|
[58] |
UMUL Y Z. Rigorous expressions for the equivalent edge currents[J]. Progress in electromagnetics research B, 2009, 15:77-94. doi: 10.2528/PIERB09040104
|
[59] |
MICHAELI A. Equivalent edge currents for arbitrary aspects of observation[J]. IEEE transactions on antennas and propagation, 1984, 32:252-258. doi: 10.1109/TAP.1984.1143303
|
[60] |
CHOU H T, PATHAK P H, ROUSSEAU P R. TD-UTD solutions for the transient radiation and surface fields of pulsed antennas placed on PEC smooth convex surfaces[J]. IEEE transactions on antennas and propagation, 2011, 59(5):1626-1637. doi: 10.1109/TAP.2011.2122235
|
[61] |
JOHANSEN P M. Time-domain version of the physical theory of diffraction[J]. IEEE transaction on antennas and propagation, 1999, 47:261-270. http://cn.bing.com/academic/profile?id=2f928878c69bc2729532e8db27dcd557&encoded=0&v=paper_preview&mkt=zh-cn
|
[62] |
陈曦.任意光滑凸曲面电磁波绕射建模方法研究[D].武汉: 武汉大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10486-1013210929.htm
CHEN X. Simulation method for electromagnetic diffraction by arbitrarily shaped convex surfaces[D]. Wuhan: Wuhan University, 2013.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10486-1013210929.htm
|
[63] |
付松.介质涂覆目标表面爬行波寻迹及其电磁绕射建模方法研究[D].武汉: 武汉大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10486-1016016060.htm
FU S. Research on creeping wave tracing and modeling algorithms of electromagnetic diffraction on dielectric-coated target surfaces[D]. Wuhan: Wuhan University, 2015.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10486-1016016060.htm
|
[64] |
CHEN X, HE S Y, YU D F, et al. Ray-tracing method for creeping waves on arbitrarily shaped nonuniform rational B-splines surfaces[J]. JOSA A, 2013, 30(4):663-670. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=285c46c7ffafa446da4b939cb8d4f141
|
[65] |
ZHOU X, ZHU J Y, YU W M, et al. time-domain shooting and bouncing rays method based on beam tracing technique[J]. IEEE transactions on antennas and propagation, 2015, 63(9):4037-4048. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c24176e45acef0bab2eac309cf5bed8e
|
[66] |
ZHANG J, YU W M, ZHOU X Yet al.Efficient Evaluation of the physical-optics integrals for conducting surfaces using the uniform stationary phase method[J]. IEEE transactions on antennas and propagation, 2012, 60(5):2398-2408. doi: 10.1109/TAP.2012.2189737
|
[67] |
YAN H, YIN H, LI S, et al.3-D rotation representation of multiple reflections and parametric model for bistatic scattering from arbitrary multiplate structure[J]. IEEE transactions on antennas and propagation, 2019, 67(7):4777-4791. doi: 10.1109/TAP.2019.2911268
|
[68] |
ZHANG F, ZHANG Y H, HE S Y, et al. Numerical simulation of scattering by a wedge with periodic anisotropic impedance faces[J]. IEEE transactions on antennas and propagation, 2014, 62(12):6091-6101. doi: 10.1109/TAP.2014.2364054
|