• Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS

Latest Notice

Latest Notice

WeChat Official Account

WeChat Official Account

WANG Tao, YIN Junjun, LIU Xiyun, HUANG Chenxia, YANG Jian. Gradient-based hyperpixel segmentation for polarimetric SAR images[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2019, 34(6): 761-770. doi: 10.13443/j.cjors.2019043005
Reference format: WANG Tao, YIN Junjun, LIU Xiyun, HUANG Chenxia, YANG Jian. Gradient-based hyperpixel segmentation for polarimetric SAR images[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2019, 34(6): 761-770. doi: 10.13443/j.cjors.2019043005

Gradient-based hyperpixel segmentation for polarimetric SAR images

More Information
  • Received Date: April 29, 2019
  • Available Online: December 30, 2020
  • Published Date: December 29, 2019
  • Superpixel segmentation has been widely used in the field of image segmentation due to its excellent performance. The simple linear iterative clustering (SLIC) method shows excellent performance in optical images and has been widely used in polarimetric SAR images. However, the initialization step of the SLIC method cannot accurately locate the class center, requiring multiple iterations to correct the errors. The improved watershed method (SCoW) is a simple and efficient segmentation method based on gradient thresholding discrimination, but it cannot be directly used in polarizing SAR images. Inspired by SCoW, in this paper, we propose a segmentation method which serves for the SLIC preprocessing step. First the edge information is detected by a CFAR edge detector, and then the edge information is used to initiate the segmentation. Experiments using real PolSAR data show that this method can reduce the number of iterations. The segmentation result is more consistent with the image boundaries in comparison with other three superpixel segmentation algorithms.
  • [1]
    REN X, MALIK J. Learning a Classification Model for Segmentation[C]//IEEE International Conference on Computer Vision, 2003. Proceedings. IEEE, 2003, 1: 10-17. https://www.researchgate.net/publication/4038368_Learning_a_classification_model_for_segmentation
    [2]
    FELZENSZWALB P F, HUTTENLOCHER D P. Efficient graph-based image segmentation[J]. International journal of computer vision, 2004, 59(2):167-181. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0230147349/
    [3]
    SHI J, MALIK J. Normalized cuts and image segmentation[J]. IEEE transactions on pattern analysis & machine intelligence, 2000, 22(8):888-905. http://d.old.wanfangdata.com.cn/Periodical/jsjyyyj200702054
    [4]
    MOORE A P, PRINCE S J D, WARRELL J, et al. Superpixel lattices[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2008: 1-8. https://www.researchgate.net/publication/221362087_Superpixel_lattices
    [5]
    LIU M Y, TUZEL O, RAMALINGAM S, et al. Entropy rate superpixel segmentation[C]//Computer Vision and Pattern Recognition. IEEE, 2011: 2097-2104. https://www.researchgate.net/publication/306150727_Entropy_rate_superpixel_segmentation
    [6]
    VINCENT L, SOILLE P. Watersheds in digital spaces:an efficient algorithm based on immersion simulations[J]. IEEE transactions on pattern analysis & machine intelligence, 1991, 13(6):583-598. http://cn.bing.com/academic/profile?id=7e0893fec58bc245a5def827c73254a4&encoded=0&v=paper_preview&mkt=zh-cn
    [7]
    COMANICIU D, MEER P. Mean shift: a robust approach toward feature space analysis[C]//IEEE transactions on pattern analysis and machine intelligence, 2002: 603-619.
    [8]
    VEDALDI A, SOATTO S. Quick shift and Kernel methods for mode seeking[M]//Computer Vision: ECCV 2008. DBLP, 2008: 705-718.
    [9]
    LEVINSHTEIN A, STERE A, KUTULAKOS K N, et al. TurboPixels:fast superpixels using geometric flows[J]. IEEE transactions on pattern analysis and machine intelligence, 2009, 31(12):2290-2297. doi: 10.1109/TPAMI.2009.96
    [10]
    ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE transactions on pattern analysis & machine intelligence, 2012, 34(11):2274-2282. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=218e2dd693ea07f7be3f296ed4e6aaba
    [11]
    LANG F, YANG J, LI D, et al. Polarimetric SAR image segmentation using statistical region merging[J]. IEEE geoscience and remote sensing letters, 2014, 11(2):509-513. doi: 10.1109/LGRS.2013.2271040
    [12]
    WU Y, JI K, YU W, et al. Region-based classification of polarimetric SAR images using Wishart MRF[J]. IEEE geoscience and remote sensing letters, 2008, 5(4):668-672. doi: 10.1109/LGRS.2008.2002263
    [13]
    BEAULIEU J M, TOUZI R. Segmentation of textured polarimetric SAR scenes by likelihood approximation[J]. IEEE geoscience and remote sensing letters, 2004, 42(10):2063-2072. doi: 10.1109/TGRS.2004.835302
    [14]
    BOMBRUN L, VASILE G, GAY M, et al. Hierarchical segmentation of polarimetric SAR images using heterogeneous clutter models[J]. IEEE transactions on geoscience and remote sensing, 2011, 49(2):726-737. doi: 10.1109/TGRS.2010.2060730
    [15]
    ALONSO-GONZÁLEZ A, LÓPEZ-MARTÍNEZ C, SALEMBIER P. Filtering and segmentation of polarimetric SAR data based on binary partition trees[J]. IEEE transactions on geoscience and remote sensing, 2012, 50(2):593-605. doi: 10.1109/TGRS.2011.2160647
    [16]
    ERSAHIN K, CUMMING I G, WARD R K, et al. Segmentation and classification of polarimetric SAR data using spectral graph partitioning[J]. IEEE transactions on geoscience and remote sensing, 2010, 48(1):164-174. doi: 10.1109/TGRS.2009.2024303
    [17]
    LIU B, HU H, WANG H Y, et al. Superpixel-based classification with an adaptive number of classes for polarimetric SAR images[J]. IEEE transactions on geoscience and remote sensing, 2013, 51(2):907-924. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=401897505cb5b2f3d6562206ef0262f2
    [18]
    LANG F, JIE Y, WU L, et al. Superpixel segmentation of polarimetric SAR image using generalized mean shift[C]//2016 International IEEE Geoscience & Remote Sensing Symposium, Beijing, 2016. https://www.researchgate.net/publication/309773182_Superpixel_segmentation_of_polarimetric_SAR_image_using_generalized_mean_shift
    [19]
    ZHANG Y, ZOU H, LUO T, et al. A fast superpixel segmentation algorithm for PolSAR images based on edge refinement and revised Wishart distance[J]. Sensors, 2016, 16(10):1687. doi: 10.3390/s16101687
    [20]
    GUO W, ZHANG Z, ZHAO J, et al. Fast topology preserving PolSAR image superpixel segmentation[C]//Geoscience & Remote Sensing Symposium, 2016. https://www.researchgate.net/publication/309776581_Fast_topology_preserving_PolSAR_image_superpixel_segmentation
    [21]
    GUO Y, JIAO L, SHUANG W, et al. Fuzzy-superpixels for polarimetric SAR images classification[J]. IEEE transactions on fuzzy systems, 2018, PP(99):1. http://cn.bing.com/academic/profile?id=85fce353dcfa915adbed92af251e884a&encoded=0&v=paper_preview&mkt=zh-cn
    [22]
    HE J, WANG Y, LIU H, et al. A novel automatic PolSAR ship detection method based on superpixel-level local information measurement[J]. IEEE geoscience and remote sensing letters, 2018, 15(3):384-388. doi: 10.1109/LGRS.2017.2789204
    [23]
    XIANG D, BAN Y, WEI W, et al. Adaptive superpixel generation for polarimetric SAR images with local iterative clustering and SIRV model[J]. IEEE transactions on geoscience & remote sensing, 2017, 55(6):3115-3131. http://cn.bing.com/academic/profile?id=7f4b531c0cc4d004b4109dfde06f7028&encoded=0&v=paper_preview&mkt=zh-cn
    [24]
    FENG J L, CAO Z J, PI Y M. Polarimetric contextual classification of PolSAR images using sparse representation and superpixels[J]. Remote sensing, 2014, 6(8):7158-7181. doi: 10.3390/rs6087158
    [25]
    QIN F C, GUO J M, LANG F K. Superpixel segmentation for polarimetric SAR imagery using local iterative clustering[J]. IEEE geoscience and remote sensing letters, 2015, 12(1):13-17. doi: 10.1109/LGRS.2014.2322960
    [26]
    HU Z, QIN Z, LI Q. Watershed superpixel[C]//IEEE International Conference on Image Processing, 2015. https://www.researchgate.net/publication/282333805_Watershed_Superpixel
    [27]
    PAPOULIS A. Probability, random variables, stochastic processes[M]. New York:McGraw-Hill, 1965.
    [28]
    ABRAMOWITZ M, STEGUN I. Handbook of mathematical functions[M]. Gaithersburg:National Bureau of Standards, 1964.
    [29]
    CONRADSEN K, NIELSEN A A, SCHOU J, et al. A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data[J]. IEEE transactions on geoscience and remote sensing, 2003, 41(1):4-19. doi: 10.1109/TGRS.2002.808066
    [30]
    SCHOU J, SKRIVER H, NIELSEN A A, et al. CFAR edge detector for polarimetric SAR images[J]. IEEE transactions on geoscience and remote sensing, 2003, 41(1):20-32. doi: 10.1109-TGRS.2002.808063/
  • Related Articles

    [1]GUAN Zhongyi, LAN Lan, ZHU Shengqi, LI Ximin, KANG Mengte. Deep learning-based radar active jamming open set recognition and unknown jamming clustering methods[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2025, 40(2): 261-275. DOI: 10.12265/j.cjors.2024118
    [2]ZHU Guyue, LI Shuangde, LIU Yuanjian, ZHU Qiuming, ZHANG Jingyi, MAO Kai, ZHOU Zhehao. Space clustering and identification based on full-domain channel characteristics for UAV communication networks[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2024, 39(3): 432-441. DOI: 10.12265/j.cjors.2023126
    [3]NIE Yifang, MBUGUA Allan Wainaina, LI Yu, YAO Xingyan, CAI Xuesong. Multi-path clustering method based on bisecting K-means clustering in wireless channel modeling[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2023, 38(2): 284-291. DOI: 10.12265/j.cjors.2022021
    [4]WU Xiaoping, LIANG Zhixi, LI Zihao, LONG Yunliang. An iterative method for solving 3D parabolic equation[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2023, 38(1): 159-163. DOI: 10.12265/j.cjors.2022009
    [5]WANG Yuhao, ZHANG Yue, ZHOU Huilin, LIU Qiegen, CAI Qi. Deep iterative network for through-the-wall radar imaging[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2022, 37(4): 546-554. DOI: 10.12265/j.cjors.2021325
    [6]ZHANG Yue, SI Weijian. Low complexity fuzzy clustering signal sorting algorithm based on union-find set[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2021, 36(5): 797-806. DOI: 10.13443/j.cjors.2020060202
    [7]ZHOU Wei, YUAN Yuan, SHAO Haining, GUO Mengyu. DOA estimation of LFM signals based on time-frequency points clustering[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2018, 33(1): 64-70. DOI: 10.13443/j.cjors.2017072102
    [8]YANG Fan, YANG Jian, YIN Junjun. Polarimetric SAR segmentation based on region merging and spectral clustering[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2015, 30(1): 37-42. DOI: 10.13443/j.cjors.2014022802
    [9]JIN Zhu, WU Yonghong, REN Yuanbo, GUAN Yingxiang, JIANG Hongkui. A channel model clustering method based on HF measured data[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2013, 28(3): 577-581.
    [10]JI Wu-sheng, YANG Fan, LUO Quan-zhen, ZHANG Yu, ZHAO Yu-jie. Analysis of ultra wideband patch microstrip antenna by wave concept iterative process[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2011, 26(6): 1126-1131.
  • Cited by

    Periodical cited type(3)

    1. 叶家伟,汪长城,高晗,沈鹏,宋天祎,胡驰浩,中南大学. 顾及时变特性的时序极化SAR图像自适应超像素生成方法. 遥感学报. 2024(04): 1066-1075 .
    2. 翁宇游,郑州,郭俊,赵志超,谢炜,胡雨. 改进U-Net网络的接地网图像超像素分割. 激光与红外. 2023(08): 1196-1202 .
    3. 严波,陈江,郭可贵,操松元,方登洲. 基于SAR图像的输电杆塔泥石流安全距离研究. 信息技术. 2021(12): 124-130 .

    Other cited types(5)

Catalog

    Article views (209) PDF downloads (34) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return