Reference format: | WANG Tao, YIN Junjun, LIU Xiyun, HUANG Chenxia, YANG Jian. Gradient-based hyperpixel segmentation for polarimetric SAR images[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2019, 34(6): 761-770. doi: 10.13443/j.cjors.2019043005 |
[1] |
REN X, MALIK J. Learning a Classification Model for Segmentation[C]//IEEE International Conference on Computer Vision, 2003. Proceedings. IEEE, 2003, 1: 10-17. https://www.researchgate.net/publication/4038368_Learning_a_classification_model_for_segmentation
|
[2] |
FELZENSZWALB P F, HUTTENLOCHER D P. Efficient graph-based image segmentation[J]. International journal of computer vision, 2004, 59(2):167-181. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0230147349/
|
[3] |
SHI J, MALIK J. Normalized cuts and image segmentation[J]. IEEE transactions on pattern analysis & machine intelligence, 2000, 22(8):888-905. http://d.old.wanfangdata.com.cn/Periodical/jsjyyyj200702054
|
[4] |
MOORE A P, PRINCE S J D, WARRELL J, et al. Superpixel lattices[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2008: 1-8. https://www.researchgate.net/publication/221362087_Superpixel_lattices
|
[5] |
LIU M Y, TUZEL O, RAMALINGAM S, et al. Entropy rate superpixel segmentation[C]//Computer Vision and Pattern Recognition. IEEE, 2011: 2097-2104. https://www.researchgate.net/publication/306150727_Entropy_rate_superpixel_segmentation
|
[6] |
VINCENT L, SOILLE P. Watersheds in digital spaces:an efficient algorithm based on immersion simulations[J]. IEEE transactions on pattern analysis & machine intelligence, 1991, 13(6):583-598. http://cn.bing.com/academic/profile?id=7e0893fec58bc245a5def827c73254a4&encoded=0&v=paper_preview&mkt=zh-cn
|
[7] |
COMANICIU D, MEER P. Mean shift: a robust approach toward feature space analysis[C]//IEEE transactions on pattern analysis and machine intelligence, 2002: 603-619.
|
[8] |
VEDALDI A, SOATTO S. Quick shift and Kernel methods for mode seeking[M]//Computer Vision: ECCV 2008. DBLP, 2008: 705-718.
|
[9] |
LEVINSHTEIN A, STERE A, KUTULAKOS K N, et al. TurboPixels:fast superpixels using geometric flows[J]. IEEE transactions on pattern analysis and machine intelligence, 2009, 31(12):2290-2297. doi: 10.1109/TPAMI.2009.96
|
[10] |
ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE transactions on pattern analysis & machine intelligence, 2012, 34(11):2274-2282. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=218e2dd693ea07f7be3f296ed4e6aaba
|
[11] |
LANG F, YANG J, LI D, et al. Polarimetric SAR image segmentation using statistical region merging[J]. IEEE geoscience and remote sensing letters, 2014, 11(2):509-513. doi: 10.1109/LGRS.2013.2271040
|
[12] |
WU Y, JI K, YU W, et al. Region-based classification of polarimetric SAR images using Wishart MRF[J]. IEEE geoscience and remote sensing letters, 2008, 5(4):668-672. doi: 10.1109/LGRS.2008.2002263
|
[13] |
BEAULIEU J M, TOUZI R. Segmentation of textured polarimetric SAR scenes by likelihood approximation[J]. IEEE geoscience and remote sensing letters, 2004, 42(10):2063-2072. doi: 10.1109/TGRS.2004.835302
|
[14] |
BOMBRUN L, VASILE G, GAY M, et al. Hierarchical segmentation of polarimetric SAR images using heterogeneous clutter models[J]. IEEE transactions on geoscience and remote sensing, 2011, 49(2):726-737. doi: 10.1109/TGRS.2010.2060730
|
[15] |
ALONSO-GONZÁLEZ A, LÓPEZ-MARTÍNEZ C, SALEMBIER P. Filtering and segmentation of polarimetric SAR data based on binary partition trees[J]. IEEE transactions on geoscience and remote sensing, 2012, 50(2):593-605. doi: 10.1109/TGRS.2011.2160647
|
[16] |
ERSAHIN K, CUMMING I G, WARD R K, et al. Segmentation and classification of polarimetric SAR data using spectral graph partitioning[J]. IEEE transactions on geoscience and remote sensing, 2010, 48(1):164-174. doi: 10.1109/TGRS.2009.2024303
|
[17] |
LIU B, HU H, WANG H Y, et al. Superpixel-based classification with an adaptive number of classes for polarimetric SAR images[J]. IEEE transactions on geoscience and remote sensing, 2013, 51(2):907-924. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=401897505cb5b2f3d6562206ef0262f2
|
[18] |
LANG F, JIE Y, WU L, et al. Superpixel segmentation of polarimetric SAR image using generalized mean shift[C]//2016 International IEEE Geoscience & Remote Sensing Symposium, Beijing, 2016. https://www.researchgate.net/publication/309773182_Superpixel_segmentation_of_polarimetric_SAR_image_using_generalized_mean_shift
|
[19] |
ZHANG Y, ZOU H, LUO T, et al. A fast superpixel segmentation algorithm for PolSAR images based on edge refinement and revised Wishart distance[J]. Sensors, 2016, 16(10):1687. doi: 10.3390/s16101687
|
[20] |
GUO W, ZHANG Z, ZHAO J, et al. Fast topology preserving PolSAR image superpixel segmentation[C]//Geoscience & Remote Sensing Symposium, 2016. https://www.researchgate.net/publication/309776581_Fast_topology_preserving_PolSAR_image_superpixel_segmentation
|
[21] |
GUO Y, JIAO L, SHUANG W, et al. Fuzzy-superpixels for polarimetric SAR images classification[J]. IEEE transactions on fuzzy systems, 2018, PP(99):1. http://cn.bing.com/academic/profile?id=85fce353dcfa915adbed92af251e884a&encoded=0&v=paper_preview&mkt=zh-cn
|
[22] |
HE J, WANG Y, LIU H, et al. A novel automatic PolSAR ship detection method based on superpixel-level local information measurement[J]. IEEE geoscience and remote sensing letters, 2018, 15(3):384-388. doi: 10.1109/LGRS.2017.2789204
|
[23] |
XIANG D, BAN Y, WEI W, et al. Adaptive superpixel generation for polarimetric SAR images with local iterative clustering and SIRV model[J]. IEEE transactions on geoscience & remote sensing, 2017, 55(6):3115-3131. http://cn.bing.com/academic/profile?id=7f4b531c0cc4d004b4109dfde06f7028&encoded=0&v=paper_preview&mkt=zh-cn
|
[24] |
FENG J L, CAO Z J, PI Y M. Polarimetric contextual classification of PolSAR images using sparse representation and superpixels[J]. Remote sensing, 2014, 6(8):7158-7181. doi: 10.3390/rs6087158
|
[25] |
QIN F C, GUO J M, LANG F K. Superpixel segmentation for polarimetric SAR imagery using local iterative clustering[J]. IEEE geoscience and remote sensing letters, 2015, 12(1):13-17. doi: 10.1109/LGRS.2014.2322960
|
[26] |
HU Z, QIN Z, LI Q. Watershed superpixel[C]//IEEE International Conference on Image Processing, 2015. https://www.researchgate.net/publication/282333805_Watershed_Superpixel
|
[27] |
PAPOULIS A. Probability, random variables, stochastic processes[M]. New York:McGraw-Hill, 1965.
|
[28] |
ABRAMOWITZ M, STEGUN I. Handbook of mathematical functions[M]. Gaithersburg:National Bureau of Standards, 1964.
|
[29] |
CONRADSEN K, NIELSEN A A, SCHOU J, et al. A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data[J]. IEEE transactions on geoscience and remote sensing, 2003, 41(1):4-19. doi: 10.1109/TGRS.2002.808066
|
[30] |
SCHOU J, SKRIVER H, NIELSEN A A, et al. CFAR edge detector for polarimetric SAR images[J]. IEEE transactions on geoscience and remote sensing, 2003, 41(1):20-32. doi: 10.1109-TGRS.2002.808063/
|
[1] | GUAN Zhongyi, LAN Lan, ZHU Shengqi, LI Ximin, KANG Mengte. Deep learning-based radar active jamming open set recognition and unknown jamming clustering methods[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2025, 40(2): 261-275. DOI: 10.12265/j.cjors.2024118 |
[2] | ZHU Guyue, LI Shuangde, LIU Yuanjian, ZHU Qiuming, ZHANG Jingyi, MAO Kai, ZHOU Zhehao. Space clustering and identification based on full-domain channel characteristics for UAV communication networks[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2024, 39(3): 432-441. DOI: 10.12265/j.cjors.2023126 |
[3] | NIE Yifang, MBUGUA Allan Wainaina, LI Yu, YAO Xingyan, CAI Xuesong. Multi-path clustering method based on bisecting K-means clustering in wireless channel modeling[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2023, 38(2): 284-291. DOI: 10.12265/j.cjors.2022021 |
[4] | WU Xiaoping, LIANG Zhixi, LI Zihao, LONG Yunliang. An iterative method for solving 3D parabolic equation[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2023, 38(1): 159-163. DOI: 10.12265/j.cjors.2022009 |
[5] | WANG Yuhao, ZHANG Yue, ZHOU Huilin, LIU Qiegen, CAI Qi. Deep iterative network for through-the-wall radar imaging[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2022, 37(4): 546-554. DOI: 10.12265/j.cjors.2021325 |
[6] | ZHANG Yue, SI Weijian. Low complexity fuzzy clustering signal sorting algorithm based on union-find set[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2021, 36(5): 797-806. DOI: 10.13443/j.cjors.2020060202 |
[7] | ZHOU Wei, YUAN Yuan, SHAO Haining, GUO Mengyu. DOA estimation of LFM signals based on time-frequency points clustering[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2018, 33(1): 64-70. DOI: 10.13443/j.cjors.2017072102 |
[8] | YANG Fan, YANG Jian, YIN Junjun. Polarimetric SAR segmentation based on region merging and spectral clustering[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2015, 30(1): 37-42. DOI: 10.13443/j.cjors.2014022802 |
[9] | JIN Zhu, WU Yonghong, REN Yuanbo, GUAN Yingxiang, JIANG Hongkui. A channel model clustering method based on HF measured data[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2013, 28(3): 577-581. |
[10] | JI Wu-sheng, YANG Fan, LUO Quan-zhen, ZHANG Yu, ZHAO Yu-jie. Analysis of ultra wideband patch microstrip antenna by wave concept iterative process[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2011, 26(6): 1126-1131. |