• Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS

Latest Notice

Latest Notice

WeChat Official Account

WeChat Official Account

HU Xiaoxi, ZHOU Chen, ZHAO Jun, LIU Yi, LIU Moran, ZHAO Zhengyu. The ionospheric foF2 prediction based on neural network optimization algorithm[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2018, 33(6): 708-716. doi: 10.13443/j.cjors.2017111301
Reference format: HU Xiaoxi, ZHOU Chen, ZHAO Jun, LIU Yi, LIU Moran, ZHAO Zhengyu. The ionospheric foF2 prediction based on neural network optimization algorithm[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2018, 33(6): 708-716. doi: 10.13443/j.cjors.2017111301

The ionospheric foF2 prediction based on neural network optimization algorithm

More Information
  • Received Date: November 12, 2017
  • Available Online: December 30, 2020
  • Published Date: December 29, 2018
  • In order to improve the ionospheric critical frequency based on BP neural network (foF2) prediction accuracy, we adopt a method of improved particle swarm optimization neural network method to optimize the initial weights of BP network to prevent the emergence of local optimal neural network in training. By comparing the results of neural network prediction based on particle swarm optimization and the optimization of genetic algorithm, we find that the two methods have good performance for BP neural network. In addition, compared with the international reference ionosphere model (IRI2016), we find that the adaptive mutation particle swarm optimization neural network can effectively improve the prediction accuracy of foF2, and has better prediction effect in low latitude area.
  • [1]
    奚迪龙, 李建儒, 刘玉梅, 等.一种电离层foF2和M(3000) F2期预测新方法[J].电波科学学报, 2008, 23(5):946-949. doi: 10.3969/j.issn.1005-0388.2008.05.029

    XI D L, LI J R, LIU Y M, et al. A new method for long-term prediction of ionosphere foF2 and M(3000) F2[J]. Chinese journal of radio science, 2008, 23(5):946-949.(in Chinese) doi: 10.3969/j.issn.1005-0388.2008.05.029
    [2]
    刘瑞源, 刘顺林, 徐中华, 等.自相关分析法在中国电离层短期预报中的应用[J].科学通报, 2005, 24(1):2781-2785. http://d.old.wanfangdata.com.cn/Periodical/kxtb200524017
    [3]
    陈春, 吴振森, 孙树计, 等.利用神经网络预报中国地区电离层foF2[J].空间科学学报, 2011, 31(3):304-310. http://cdmd.cnki.com.cn/Article/CDMD-10701-2010128514.htm

    CHEN C, WU Z S, SUN S J, et al. Forecasting of ionospheric foF2 in China using neural network[J]. Chinese journal of space sciences, 2011, 31(3):304-310.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10701-2010128514.htm
    [4]
    POOLE A W V, MCKINNELL L A. On the predictability of foF2 using neural networks[J]. Radio science, 2000, 35(1):225-234. doi: 10.1029/1999RS900105
    [5]
    WINTOFT P, CANDER L R. Twenty-four hour predictions of foF2 using time delay neural networks[J]. Radio science, 2000, 35(2):395-408. http://ieeexplore.ieee.org/document/7770607/
    [6]
    WILLISCROFT L A, POOLE A W V. Neural networks, foF2, sunspot number and magnetic activity[J]. Geophysical research letters, 1996, 23(24):3659-3662. doi: 10.1029/96GL03472
    [7]
    孔庆颜, 柳文, 凡俊梅, 等.利用人工神经网络预测电离层foF2参数[J].地球物理学报, 2009, 52(6):1438-1443. doi: 10.3969/j.issn.0001-5733.2009.06.003

    KONG Q Y, LIU W, FAN J M, et al. On the prediction of foF2 using artificial neural networks[J]. Chinese journal of geophysics, 2009, 52(6):1438-1443.(in Chinese) doi: 10.3969/j.issn.0001-5733.2009.06.003
    [8]
    WANG R, ZHOU C, DENG Z, et al. Predicting foF2, in the China region using the neural networks improved by the genetic algorithm[J]. Journal of atmospheric and solar-terrestrial physics, 2013, 92(3):7-17. http://www.sciencedirect.com/science/article/pii/S1364682612002313
    [9]
    ZHAO X K, NING B Q, LIU L B, et al. A prediction model of short-term ionospheric foF2 based on AdaBoost[J]. Advances in space research, 2014, 53(3):387-394. doi: 10.1016/j.asr.2013.12.001
    [10]
    SHI Y H, EBERHART R C. A modified particle swarm optimizer[C]//Proceedings of IEEE International Conference on Evolutional Computation. Anchorage, 1988, 69-73.
    [11]
    MCKINNELL L A, POOLE A W V. The development of a neural network based short term foF2 forecast program[J]. Physics and chemistry of the Earth, 2000, 25:287-290. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c1615e75f458dc29f954e7213a560e39
    [12]
    KUMLUCA A, TULUNAY E, TOPALLI I, et al. Temporal and spatial forecasting of ionospheric critical frequency using neural networks[J]. Radio science, 1999, 34(6):1497-1506. doi: 10.1029/1999RS900070
    [13]
    CANDER L R. Spatial correlation of foF2 and vTEC under quiet and disturbed ionospheric conditions:a case study[J]. Acta geophysica, 2007, 55(3):410. doi: 10.2478/s11600-007-0011-9
    [14]
    OYEYEMI E O, MCKINNELL L A, POOLE A W V. Near-real time foF2 predictions using neural networks[J]. Journal of atmospheric and solar-terrestrial physics, 2006, 68(16):1807-1818. doi: 10.1016/j.jastp.2006.07.002
    [15]
    WRENN G L. Time-weighted accumulations ap(τ) and Kp(τ)[J]. Journal of geophysical research atmospheres, 1987, 92(A9):9. http://cn.bing.com/academic/profile?id=3fd927d6d265038de30dc8504f59dfc6&encoded=0&v=paper_preview&mkt=zh-cn
    [16]
    APOSTOLOV E M, ALTADILL D, TODOROVA M. The 22-year cycle in the geomagnetic 27-day recurrences reflecting on the F2-layer ionization[J]. Annales geophysicae, 2004(22):1171-1176. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_18ef12bab62cdd5862c7fcc5ba921e42
    [17]
    徐继生, 李雪璟, 刘裔文, 等.磁偏角和热层风对中纬电离层TEC经度分布的影响[J].地球物理学报, 2013, 56(5):1425-1434. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201305001

    XU J S, LI X J, LIU Y W, et al. Effects of declination and thermospheric wind on TEC longitude variations in the mid-latitude ionosphere[J]. Chinese journal of geophysics, 2013, 56(5):1425-1434.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201305001

Catalog

    Article views (147) PDF downloads (37) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return