• Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS

Latest Notice

Latest Notice

WeChat Official Account

WeChat Official Account

LYU Huijuan, FANG Hanxian, WANG Sicheng, GAO Ze, MENG Xing. Numerical simulation of ionospheric modification by three representative chemical releases[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2018, 33(5): 544-556. doi: 10.13443/j.cjors.2017092701
Reference format: LYU Huijuan, FANG Hanxian, WANG Sicheng, GAO Ze, MENG Xing. Numerical simulation of ionospheric modification by three representative chemical releases[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2018, 33(5): 544-556. doi: 10.13443/j.cjors.2017092701

Numerical simulation of ionospheric modification by three representative chemical releases

More Information
  • Received Date: September 26, 2017
  • Available Online: December 30, 2020
  • Published Date: October 29, 2018
  • Artificial ionospheric modification can disturb the short-wave communications and satellite communications. In this paper, on the basis of neutral gas diffusion equation, chemical reaction equation and plasma diffusion equation, the ionospheric disturbances caused by three representative chemicals (H2, CO2, CF3Br) are simulated with a 3D dynamics model. The short wave propagation in disturbed ionosphere is also investigated with a 3D digital ray tracing method. The results show that single-point releases generate ellipse-like ionospheric holes, and a slightly larger scale is found along magnetic field than vertical direction in the hole's horizontal plane. With the same amount of substance and same release altitude, H2 diffuses fastest and CF3Br diffuses slowest, but as for the maximum relative change rate of electron density at t=100 s, CF3Br corresponds to the highest rate while H2 corresponds to the lowest. The release of CF3Br results in the smallest vertical range of ionospheric hole, so the ray firstly penetrating the hole is at a higher frequency than that of CO2 and CF3Br. The release of H2 results in the smallest electron density gradient at the hole's boundary among three chemicals, so the altitude of ray focus point is always higher than that of CO2 and CF3Br, indicating the weakest focus effect. Multipoint releases generate parabola-like tubular holes and lead to more diverse ray paths as well as ray focus effect. The altitude of focus point elevates with higher ray frequency, which is consistent with the single-point release condition.
  • [1]
    MENDILLO M, HAWKINS G S, KLOBUCHAR J A. A sudden vanishing of the ionospheric F region due to the launch of Skylab[J].Journal of geophysical research, 1975, 80(16):2217-2228. doi: 10.1029/JA080i016p02217
    [2]
    汪四成, 方涵先, 杨升高, 等.化学物质SF6和H2O释放扰动电离层比较研究[J].地球物理学进展, 2012, 27(6):2464-2469. http://d.old.wanfangdata.com.cn/Periodical/dqwlxjz201206021

    WANG S C, FANG H X, YANG S G, et al. Disturbance effects of SF6 and H2O released in ionosphere[J]. Progress in geophysics, 2012, 27(6):2464-2469. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/dqwlxjz201206021
    [3]
    KLOBUCHAR J A, ABDU M A. Equatorial ionospheric irregularities produced by the Brazilian ionospheric modification experiment (BIME)[J].Journal of geophysical research:space physics, 1989, 94(A3):2721-2726. doi: 10.1029/JA094iA03p02721
    [4]
    BERNHARDT P A, BALLENTHIN J O, BAUMGARDNER J L, et al. Ground and space-based measurement of rocket engine burns in the ionosphere[J]. IEEE transactions on plasma science, 2012, 40(5):1267-1286. doi: 10.1109/TPS.2012.2185814
    [5]
    BERNHARDT P A, SIEFRING C L, BRICZINSKI S J, et al. A physics-based model for the ionization of samarium by the MOSC chemical releases in the upper atmosphere[J]. Radio science, 2017, 52(5):RS006078. doi: 10.1002/2016RS006078
    [6]
    MENDILLO M, HAWKINS G S, KLOBUCHAR J A. A large-scale hole in the ionosphere caused by the launch of Skylab[J]. Science, 1975, 187(4174):343-346. doi: 10.1126/science.187.4174.343
    [7]
    BERNHARDT P A. Three-dimensional, time-dependent modeling of neutral gas diffusion in a nonuniform, chemically reactive atmosphere[J].Journal of geophysical research, 1979, 84(A3):793-802. doi: 10.1029/JA084iA03p00793
    [8]
    SCALES W A, BERNHARDT P A, Ganguli G. Early time evolution of negative ion clouds and electron density depletions produced during electron attachment chemical release experiments[J]. Journal of geophysical research, 1994, 99(A1):373-381. doi: 10.1029/93JA02752
    [9]
    LEBEDEV V P, KHAKHINOV V V, KUHNAREV D S.Studying effects of transport spacecraft "progress" engine burning on radar characteristics[C]//The XXXIth General Assembly and Scientific Symposium of the URSI. Beijing, 16-23 August, 2014.
    [10]
    RAPP M, LÜBKEN F J. Polar mesosphere summer echoes (PMSE) review of observations and current understanding[J]. Atmospheric chemistry & physics, 2004, 4(11/12):2601-2633. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_c0372841fd4ea94946ac3ed919698111
    [11]
    JOSHI D R, GROVES K M. High frequency propagation modeling in a disturbed background ionosphere: Results from the metal oxide space cloud(MOSC) experiment[C]//AGU Fall Meeting Abstracts. San Francisco: American Geophysical Union, 2015.
    [12]
    PEDERSEN T R, CATON G R, MILLER D, et al. Empirical modeling of plasma clouds produced by the metal oxide space clouds experiment[J]. Radio science, 2017, 52(5):578-596. doi: 10.1002/rds.v52.5
    [13]
    许正文, 赵海生, 徐彬, 等.电离层化学物质释放实验最新研究进展[J].电波科学学报, 2017, 32(2):221-226. http://d.old.wanfangdata.com.cn/Periodical/dbkxxb201702013

    XU Z W, ZHAO H S, XU B, et al. Latest development ofchemical releases in ionosphere[J]. Chinese journal of radio science, 2017, 32(2):221-226. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/dbkxxb201702013
    [14]
    黄文耿, 古士芬.化学物质释放人工改变电离层[J].空间科学学报, 2005, 25(4):254-258. doi: 10.3969/j.issn.0254-6124.2005.04.003

    HUANG W G, GU S F. Ionospheric disturbances produced by artificially chemical release[J]. Chinese journal of spacescience, 2005, 25(4):254-258. (in Chinese) doi: 10.3969/j.issn.0254-6124.2005.04.003
    [15]
    胡耀垓, 赵正予, 张援农.几种典型化学物质的电离层释放效应研究[J].物理学报, 2010, 59(11):8293-8303. doi: 10.7498/aps.59.8293

    HU Y G, ZHAO Z Y, ZHANG Y N. Disturbance effects of some representative chemical releases in ionosphere[J]. Acta physica sinca, 2010, 59(11):8293-8303. (in Chinese) doi: 10.7498/aps.59.8293
    [16]
    HU Y G, ZHAO Z Y, ZHANG Y N. Ionospheric disturbances produced by chemical releases and the resultant effects on short-wave ionospheric propagation[J]. Journal of geophysical research, 2011, 116(A7):395-402.
    [17]
    黄勇, 时家明, 袁忠才.释放不同化学物质对电离层扰动的比较[J].空间科学学报, 2012, 32(1):33-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200031332

    HUANG Y, SHI J M, YUAN Z C. Comparision of ionospheric modification by different chemicals releases[J]. Chinese journal of space science, 2012, 32(1):33-39. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200031332
    [18]
    赵海生, 许正文, 吴振森, 等.电离层中放六氟化硫效应的三维精细模拟研究[J].物理学报, 2016, 65(20):209401. doi: 10.7498/aps.65.209401

    ZHAO H S, XU Z W, WU Z S, et al. A three-dimensional refined modeling for the effects of SF6 release in ionosphere[J]. Acta physica sinca, 2016, 65(20):209401. (in Chinese) doi: 10.7498/aps.65.209401
    [19]
    BERNHARDT P A, SCALES W A. Ionospheric chemical releases[C]//Conference Proceeding of Ionospheric Modification and Its Potential to Enhance or Degrade the Performance of Military Systems. Norway: Bergen, 1990: 348-357.
    [20]
    MENDILLO M, SEMETER J, NOTO J. Finite element simulation (FES):a computer modeling technique for studies of chemical modification of the ionosphere[J]. Advances in space research, 1993, 13(10):55-64. doi: 10.1016/0273-1177(93)90050-L
    [21]
    BERNHARDT P A. A critical comparison of ionospheric depletion chemicals[J]. Journal of geophysical research, 1987, 92(A5):4617-4628. doi: 10.1029/JA092iA05p04617
    [22]
    FERGUSON E E. Rate constants of thermal energy binary ion-molecule reactions of aeronomic interest[J]. Atomic data and nuclear data tables, 1973, 12(2):159-178. doi: 10.1016/0092-640X(73)90017-X
    [23]
    王艳.火箭尾焰电离层效应研究[D].武汉: 武汉大学, 2008.

    WANG Y. A Study on ionospheric effects of the rocket plume[D]. Wuhan: Wuhan University, 2008. (in Chinese)
    [24]
    ANDERSON D A, BERNHARDT P A. Modeling the effects of an H2 gas release on equatorial ionosphere[J]. Journal of geophysical research, 1978, 83(A10):4777-4790. doi: 10.1029/JA083iA10p04777
    [25]
    HASELGROVE J. Ray theory and a new method for ray tracing[R]. Cambridge: the Cavendish Laboratory, 1954.
    [26]
    索玉成.电离层短波射线追踪[J].空间科学学报, 1993, 13(4):306-312. http://d.old.wanfangdata.com.cn/Periodical/dbkxxb200801007

    SUO Y C. Ionospheric short-wave ray tracing[J]. Chinese journal of space science, 1993, 13(4):306-312. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/dbkxxb200801007
    [27]
    孙方, 康士峰, 赵振雄, 等.快速算法实现电离层短波射线追踪[J].通信技术, 2010, 43(7):14-16. http://d.old.wanfangdata.com.cn/Periodical/txjs201007005

    SUN F, KANG S F, ZHAO Z X, et al. High-speed algorithm for realization of short-wave ray tracing in ionosphere[J]. Communications technology, 2010, 43(7):14-16. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/txjs201007005
  • Related Articles

    [1]HAN Xiaobing, GUO Tao, LI Hang, LIANG Bingyang, ZHOU Yuanguo. Application research on CFS-PML-based high-order finite element method in GPR numerical simulation[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2022, 37(5): 837-843. DOI: 10.12265/j.cjors.2021258
    [2]HU Hao, DING Juli, ZHANG Yu, ZHAO Xiaofeng, GE Jingjing, LIANG Zhichao. Cause analysis and numerical simulation research of over-the-horizon detection accompanied with radar anomalous terrain echo[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2022, 37(2): 189-197. DOI: 10.12265/j.cjors.2021219
    [3]CHENG Yinhe, XU Jianhui, ZHANG Yusheng, GUO Xiangming, YOU Zhiwei. Influence of sea surface temperature on numerical simulation of lower atmospheric duct over the South China Sea[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2022, 37(1): 40-47. DOI: 10.12265/j.cjors.2021004
    [4]GUO Shili, YAN Fei, ZHU Peimin, LI Xiuzhong. Three dimensional numerical simulation of ground penetrating radar based on multiphase discrete random medium[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2016, 31(1): 173-179. DOI: 10.13443/j.cjors.2015012301
    [5]CHEN Xiaoning, HUANG Liyang, GUO Fei, ZHANG Bin, CHEN Peng. Numerical simulation of lightning initial attachment zones on helicopter[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2015, 30(5): 910-916. DOI: 10.13443/j.cjors.2014110801
    [6]ZHAO Zhongyi, TANG Zhaosheng, HUANG Hailong. Simulation research on lightning electromagnetic environment of aircraft cabin[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2015, 30(2): 391-395, 408. DOI: 10.13443/j.cjors.2014041701
    [7]FAN Yiren, LI Hu, HU Yunyun, SUN Qingtao. Numerical simulation of electromagnetic LWD tool response in dipping anisotropic formation[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2013, 28(5): 996-1000.
    [8]CHEN Xiquan, SUN Jie. Systemic modeling and numerical simulation of electromagnetic radiation field intensity around mobile communication base stations[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2013, 28(1): 183-189.
    [9]GAO Cheng, SONG Shuang, GUO Yongchao, YANG Qiang. Study of numerical simulation of aircraft attachment points and lightning zoning[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2012, 27(6): 1238-1243.
    [10]GUO Fei, ZHOU Bi-hua, GAO Cheng. Analysis for lightning indirect effects of the aircraft by numerical stimulation[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2012, 27(6): 1129-1135.
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

Catalog

    Article views (243) PDF downloads (38) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return