• Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS

Latest Notice

Latest Notice

WeChat Official Account

WeChat Official Account

DUAN Suxin, ZHANG Hao, SUN Xiuzhi, ZHENG Chundi. A low complexity algorithm based on the weighted l1 inimization for DOA estimation[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2015, 30(4): 640-646. doi: 10.13443/j.cjors.2014030402
Reference format: DUAN Suxin, ZHANG Hao, SUN Xiuzhi, ZHENG Chundi. A low complexity algorithm based on the weighted l1 inimization for DOA estimation[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2015, 30(4): 640-646. doi: 10.13443/j.cjors.2014030402

A low complexity algorithm based on the weighted l1 inimization for DOA estimation

More Information
  • Received Date: March 03, 2014
  • Available Online: December 30, 2020
  • Published Date: August 28, 2015
  • Based on the sparse representation of the array covariance matrix and the Khatri-Rao product of the array response matrix, a low computational complexity sparse recovery method for direction-of-arrival (DOA) estimation is presented. The proposed algorithm not only lessens the number of unknown variable, but also can cut down the dimension of the constraints, which considerably reduce the computational complexity of the second order cone programming. Moreover, a weighted l1 minimization is designed by using the reciprocal of the Capon spectrum as a weighting vector. As a result, the proposed algorithm can achieve better performance while the computational complexity is reduced. Simulations demonstrate the performance of the proposed method.
  • [1]
    陈显舟, 杨源, 韩静静, 等.双基地多入多出雷达收发方位角联合估计算法[J].电波科学学报, 2013, 28(1):176-182. http://d.old.wanfangdata.com.cn/Periodical/dbkxxb201301030

    CHEN Xianzhou, YANG Yuan, HAN Jingjing, et al.Joint DOD and DOA estimation using polynomial rooting for bistatic MIMO radar[J].Chinese Journal of Radio Science, 2013, 28(1):176-182.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/dbkxxb201301030
    [2]
    程院兵, 顾红, 苏卫民.双基地MIMO雷达发射波束形成与多目标定位[J].电波科学学报, 2012, 27(2):275-281. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201201656967

    CHENG Yuanbing, GU Hong, SU Weimin.Transmit beamforming and multi-target localization in bistatic MIMO radar[J].Chinese Journal of Radio Science, 2012, 27(2):275-281.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201201656967
    [3]
    王永良, 陈辉, 彭应宁, 等.空间谱估计理论与算法[M].北京:清华大学出版社, 2004.

    WANG Yongliang, CHEN Hui, PENG Yingning, et al.Spatial Spectrum Estimation Theory and Algorithm[M].Beijing:Tsinghua University Press, 2004.(in Chinese)
    [4]
    MALIOUTOV D, CETIN M, WILLSKY A.A sparse signal reconstruction perspective for source localization with sensor arrays[J].IEEE Transactions on Signal Processing, 2005, 53(8):3010-3022. doi: 10.1109/TSP.2005.850882
    [5]
    YIN J, CHEN T.Direction-of-arrival estimation using a sparse representation of array covariance vectors[J].IEEE Transactions on Signal Processing, 2011, 59(9):4489-4493. doi: 10.1109/TSP.2011.2158425
    [6]
    XU X, WEI X, YE Z.DOA estimation based on sparse signal recovery utilizing weighted l1 norm penalty[J].IEEE Signal Processing Letters, 2012, 19(3):155-158. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c174079f358c9f73d4dc5db306bb789b
    [7]
    HE Z Q, LIU Q H, JIN L N, et al.Low complexity method for DOA estimation using array covariance matrix sparse representation[J].Electronics Letters, 2013, 49(3):228-230. doi: 10.1049/el.2012.4032
    [8]
    ZHENG C, LI G, LIU Y, et al.Subspace weighted l2, 1 minimization for sparse signal recovery[J].EURASIP Journal on Advances in Signal Processing, 2012, 2012:98. doi: 10.1186/1687-6180-2012-98
    [9]
    ZHENG Chundi, LI Gang, WANG Xiqin.Combination of weighted l2, 1 minimization with unitary transformation for DOA estimation[J].Signal Processing, 2013, 93(12):3430-3434. doi: 10.1016/j.sigpro.2013.03.028
    [10]
    STOICA P, BABU P, LI J.New method of sparse parameter estimation in separable models and its use for spectral analysis of irregularly sampled data[J].IEEE Transactions on Signal Processing, 2011, 59(1):35-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=05475e167279edd3e5ee844a43a1b3a5
    [11]
    NESTEROV Y, NEMIROVSKII A, YE Y.Interior-point polynomial algorithms in convex programming[M].SIAM Philadelphia, 1994.
    [12]
    MA W K, HSIEH T H, CHI C Y.Direction-of-arrival estimation of quasi-stationary signals with less sensors than sources and unknown spatial noise covariance:a Khatri-Rao subspace approach[J].IEEE Trans.Signal Processing, 2010, 58, (4):2168-2180. doi: 10.1109/TSP.2009.2034935
    [13]
    OTTERSTEN B, STOICA P, ROY R.Covariance matching estimation techniques for array signal processing applications[J].Digital Signal Processing, 1998, 8(3):185-210. http://www.sciencedirect.com/science/article/pii/S1051200498903165
    [14]
    ZHENG C, LI G, XIA X, et al.Weighted l2, 1 minimization for high resolution range profile with stepped frequency radar[J].Electronics Letters, 2012, 48(18):1155-1156. doi: 10.1049/el.2012.1382
    [15]
    GRANT M, BOYD S.CVX: Matlab software for disciplined convex programming, version 1.22[EB/OL]2012[2012-03-04].http://cvxr.com/cvx/.
    [16]
    FUCHS J.DOA estimation in the presence of modeling errors, the global matched filter approach[C]//Proceedings of 17th European Signal Processing Conference.Glasgow, 2009: 1963-1967.
    [17]
    JOHNSON D, DUDGEON D.Array Signal Processing:Concepts and Techniques[M].Englewood Cliffs:Prentice-Hall, 1993.
    [18]
    CANDES E, WAKIN M, BOYD S.Enhancing sparsity by reweighted l1 minimization[J].Journal of Fourier Analysis and Applications, 2008, 14(5):877-905. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0711.1612

Catalog

    Article views (143) PDF downloads (249) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return