• Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS

Latest Notice

Latest Notice

WeChat Official Account

WeChat Official Account

WU Y, WANG S F, SHEN Z A, et al. SBR algorithm for electrically large coated targets and MPI parallel acceleration technology[J]. Chinese journal of radio science,2025,40(3):1-8. (in Chinese). DOI: 10.12265/j.cjors.2025009
Reference format: WU Y, WANG S F, SHEN Z A, et al. SBR algorithm for electrically large coated targets and MPI parallel acceleration technology[J]. Chinese journal of radio science,2025,40(3):1-8. (in Chinese). DOI: 10.12265/j.cjors.2025009

SBR algorithm for electrically large coated targets and MPI parallel acceleration technology

More Information
  • Received Date: January 16, 2025
  • Accepted Date: April 17, 2025
  • Available Online: April 17, 2025
  • In this paper, an efficient shooting and bouncing ray (SBR) based computational method is proposed to address the rapid electromagnetic scattering computation of electrically large targets coated with radar-absorbing material (RAM). Using the generalized propagation matrix method, the reflection coefficient of multi-layer dielectrics with a metallic substrate is derived, which is subsequently coupled with the SBR method to accurately calculate the radar cross section of complex targets coated with multi-layer dielectric materials. To further improve computational efficiency, message passing interface (MPI) parallel acceleration technology based on CPU platforms is employed to reduce computation time, resulting in high parallel efficiency for the SBR method. Numerical results show that the calculated radar cross section (RCS) of the dihedral corner reflector and ship models agree well with FEKO results, with the reflector RMSE below 3 dBsm. Additionally, for electrically large coated aircraft targets, the parallel efficiency exceeds 80%, demonstrating the accuracy and efficiency of the method. This method effectively solves the accuracy and speed issues in the electromagnetic scattering computation of coated large-scale targets, providing an efficient solution for the stealth performance evaluation of complex large-scale targets.

  • [1]
    KNOTT E F,SCHAEFFER J F,TULLEY M T. Radar cross section[M]. SciTech Publishing,2004.
    [2]
    BILAL A,HAMZA S M,TAJ Z,et al. Multi-frequency analysis of gaussian process modelling for aperiodic RCS responses of a parameterised aircraft model[J]. IET radar,sonar & navigation,2020,14(7):1061-1067.
    [3]
    孔祥林,马洪宇,陈鹏,等. 基于电阻膜的超宽带超材料吸波体设计[J]. 电波科学学报,2021,36(6):947-952. doi: 10.12265/j.cjors.2021126

    KONG X L,MA H Y,CHEN P,et al. Design of ultra-wideband metamaterial absorber based on resistance films[J]. Chinese journal of radio science,2021,36(6):947-952. (in Chinese) doi: 10.12265/j.cjors.2021126
    [4]
    AI X,TIAN Y,CUI Z W,et al. A dispersive conformal FDTD technique for accurate modeling electromagnetic scattering of THz waves by inhomogeneous plasma cylinder array[J]. Progress in electromagnetics research,2013,142:353-368. doi: 10.2528/PIER13052409
    [5]
    CHEN G,ZHAO L,YU W H,et al. A general scheme for the discontinuous Galerkin time-domain modeling and S-parameter extraction of inhomogeneous waveports[J]. IEEE transactions on microwave theory and techniques,2018,66(4):1701-1712. doi: 10.1109/TMTT.2017.2785800
    [6]
    BIAN Z,LI J T,GUO L X,et al. Analyzing the electromagnetic scattering characteristics of a hypersonic vehicle based on the inhomogeneity zonal medium model[J]. IEEE transactions on antennas and propagation,2020,69(2):971-982.
    [7]
    BURKHOLDER R J,LUNDIN T. Forward-backward iterative physical optics algorithm for computing the RCS of open-ended cavities[J]. IEEE transactions on antennas and propagation,2005,53(2):793-799. doi: 10.1109/TAP.2004.841317
    [8]
    ZHU Y,WEI G,LI J Z. A shooting and bouncing ray method for electrically large targets with non-uniform thickness anisotropic material[J]. IEEE transactions on antennas and propagation,2024,72(7):6156-6161. doi: 10.1109/TAP.2024.3407346
    [9]
    DONG C L,GUO L X,MENG X,et al. An accelerated SBR for EM scattering from the electrically large complex objects[J]. IEEE antennas and wireless propagation letters,2018,17(12):2294-2298. doi: 10.1109/LAWP.2018.2873119
    [10]
    TAO Y B,LIN H,BAO H J. KD-tree based fast ray tracing for RCS prediction[J]. Progress in electromagnetics research,2008,81:329-341. doi: 10.2528/PIER08011305
    [11]
    KASDORF S,TROKSA B,KEY C,et al. Parallel GPU optimization of the shooting and bouncing ray tracing methodology for propagation modeling[J]. IEEE transactions on antennas and propagation,2024,72(1):174-182. doi: 10.1109/TAP.2024.3350896
    [12]
    ZHAO G,SUN N W,SHEN S,et al. GPU-accelerated target strength prediction based on multiresolution shooting and bouncing ray method[J]. Applied sciences,2022,12(12):6119. doi: 10.3390/app12126119
    [13]
    HUO J C,XU L,SHI X W,et al. An accelerated shooting and bouncing ray method based on GPU and virtual ray tube for fast RCS prediction[J]. IEEE antennas and wireless propagation letters,2021,20(9):1839-1843. doi: 10.1109/LAWP.2021.3098970
    [14]
    刘祥. 基于并行SBR的电大尺寸目标近场电磁散射研究[D]. 西安:西安电子科技大学,2018.

    LIU X. Near-field electromagnetic scattering of large-size targets based on parallel SBR[D]. Xi’an:Xidian University,2018. (in Chinese)
    [15]
    徐万里. 基于Spark的近海与舰船目标复合散射特性研究[D]. 西安:西安电子科技大学,2019.

    XU W L. Research on composite scattering characteristics of near sea and ship target based on spark[D]. Xi’an:Xidian University,2019. (in Chinese)
    [16]
    WANG J J,GUO L X,WEI Y W,et al. Application of the improved SBR-TSM based on MPI to EM scattering from multiple targets above a 3-D rough sea surface[J]. IEEE antennas and wireless propagation letters,2021,21(2):411-415.
    [17]
    郑宏兴,葛德彪. 广义传播矩阵法分析分层各向异性材料对电磁波的反射与透射[J]. 物理学报,2000,49(9):1702-1706. doi: 10.7498/aps.49.1702

    ZHENG H X,GE D B. Electromagnetic wave reflection and transmission of anisotropic layered media by generalized propagation matrix method[J]. Acta physica sinica,2000,49(9):1702-1706. (in Chinese) doi: 10.7498/aps.49.1702
    [18]
    朱逸,李建周,秦则芸,等. 分层双轴各向异性介质电磁传播矩阵计算[J]. 系统工程与电子技术,2021,43(12):3420-3428. doi: 10.12305/j.issn.1001-506X.2021.12.02

    ZHU Y,LI J Z,QIN Z Y,et al. Computation of electromagnetic propagation matrix for layered biaxial anisotropic media[J]. Journal of systems engineering and electronics,2021,43(12):3420-3428. (in Chinese) doi: 10.12305/j.issn.1001-506X.2021.12.02
    [19]
    DONG C L,GUO L X,MENG X. Application of CUDA-accelerated GO/PO method in calculation of electromagnetic scattering from coated targets[J]. IEEE access,2020,8:35420-35428. doi: 10.1109/ACCESS.2020.2974770
  • Related Articles

    [1]MA Yuhui, LIU Lu, JIA Shuaiyu, WANG Yihao, LI Yan. A novel method of antenna broadband radar cross section reduction by absorptive/transmissive metasurface[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2022, 37(3): 471-477. DOI: 10.12265/j.cjors.2021116
    [2]WANG Weijing, SHI Yan, MENG Zankui, MENG Haoxuan. A metasurface design method for dual wide band radar cross section reduction[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2021, 36(6): 887-895. DOI: 10.12265/j.cjors.2021073
    [3]XU Xiaojian. How to understand high resolution radar images and the pixel values of targets[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2019, 34(1): 33-44. DOI: 10.13443/j.cjors.2018073101
    [4]LI Zebin, WANG Hailu, YUAN Chengxun, YAO Jingfeng, YU Zhi, ZHOU Zhongxiang. Electromagnetic characteristics of plasma combining radar absorbing material[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2018, 33(6): 695-700. DOI: 10.13443/j.cjors.2018071501
    [5]LIU Ying, YU Xu, GONG Shuxi. Radar cross-section reduction of a microstrip antenna using annulus metallic material[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2016, 31(6): 1107-1112. DOI: 10.13443/j.cjors.2016120801
    [6]FAN Xueman, HU Shengliang, HE Jingbo. High-frequency method for the evaluation of the radar cross section of corner reflectors[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2016, 31(2): 331-335, 362. DOI: 10.13443/j.cjors.2015061401
    [7]LIU Tao, CAO Xiangyu, GAO Jun, ZHENG Qiurong, YANG Huanhuan. Design of metamaterial absorber and its characteristics of RCS[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2012, 27(6): 1219-1224.
    [8]LIU Liguo, ZHANG Guojun, MO Jinjun, YUAN Naichang. Improvement of graphical electromagnetic computing method for radar cross section[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2012, 27(6): 1146-1151.
    [9]JIN Wang, WU Jian, WU Zhensen, LIU Yongjun, SUN Mingguo. Space debris cross section observations with 930 MHz radar[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2012, 27(6): 1076-1080.
    [10]LING Jin, GONG Shu-xi, WANG Wen-tao, WANG Xing, ZHANG Yu-jie. A novel technique for fast radar cross section computation in spatial domains[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2011, 26(1): 151-156.

Catalog

    Article views (65) PDF downloads (16) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return