• Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS

Latest Notice

Latest Notice

WeChat Official Account

WeChat Official Account

SHI S B, DONG X, HUANG S, et al. Inversion method of total ionospheric electron content in complex electromagnetic environment[J]. Chinese journal of radio science,2025,40(1):113-123. (in Chinese). DOI: 10.12265/j.cjors.2023227
Reference format: SHI S B, DONG X, HUANG S, et al. Inversion method of total ionospheric electron content in complex electromagnetic environment[J]. Chinese journal of radio science,2025,40(1):113-123. (in Chinese). DOI: 10.12265/j.cjors.2023227

Inversion method of total ionospheric electron content in complex electromagnetic environment

More Information
  • Received Date: August 07, 2023
  • Accepted Date: December 04, 2023
  • Available Online: December 04, 2023
  • Ionospheric electron content inversion using Global Navigation Satellite System (GNSS) dual-frequency differential signals is a commonly used means of ionospheric detection. However, the GNSS signal is submerged in electromagnetic noise and cannot be extracted under strong electromagnetic interference, which affects the reliability of the total electron content (TEC) inversion system. The traditional zeroing anti-jamming array antenna scheme can solve the problem of interference source stripping, but due to the unstable antenna phase center of the zeroing signal, resulting in high-precision phase smoothing pseudorange and precise point positioning (PPP) algorithms can not be converged. For the ionospheric monitoring needs strong interference environment, this paper proposes an anti-interference TEC data inversion means through the array antenna channel amplitude-phase consistency correction, to ensure the stability of the phase center, so as to deduce the accurate ionospheric TEC information, which can improve the system reliability and anti-interference ability.

  • [1]
    SHAGIMURATOV I I,CHERNOUSS S A,DESPIRAK I V,et al. Occurrence of TEC fluctuations and GPS positioning errors at different longitudes during auroral disturbances[J]. Sun and geosphere,2018(13/1):89-94.
    [2]
    BISWAS T,BANERJEE P,PAUL A. Impact of low-latitude ionospheric effects on precise position determination[J]. Radio science,2022(4):57.
    [3]
    DATTA-BARUA S,DOHERTY P H,DEHEL T,et al. Ionospheric scintillation effects on single and dual frequency GPS positioning[C]// Proceedings of International Technical Meeting of the Satellite Division of the Institute of Navigation,2003:336-346.
    [4]
    ZHU W,LEI Y,SUN Q. Detection,estimation and compensation of ionospheric effect on SAR interferogram using azimuth shift[J]. Journal of geodesy and geoinformation science,2022(1):14-24.
    [5]
    SCHWATKE C,DETTMERING D. Ionospheric corrections for satellite altimetry-impact on global mean sea level trends[J]. Earth and space science,2022,9(4). DOI: 10.1029/2021EA002098
    [6]
    GRAY A L,MATTAR K E,SOFKO G. Influence of ionospheric electron density fluctuations on satellite radar interferometry[J]. Geophysical research letters,2000,27(10). DOI: 10.1029/2000GL000016
    [7]
    AMARANTE G M,RADICELLA S M,NAVA B,et al. Validation of a method for ionospheric electron density reconstruction by means of vertical incidence data during quiet and storm periods[J]. Annals of geophysics,2009,48(2). DOI: 10.4401/ag-3204
    [8]
    REN X,MEI D,ZHANG X,et al. Electron density reconstruction by ionospheric tomography from the combination of GNSS and upcoming LEO constellations[J]. Journal of geophysical research:space physics,2021,126. DOI: 10.1029/2020JA029074
    [9]
    RAYMUND T D,PRYSE S E,KERSLEY L,et al. Tomographic reconstruction of ionospheric electron density with European incoherent scatter radar verification[J]. Radio science,2016,28(5):811-817.
    [10]
    CHAPMAN S. The absorption and dissociative or ionizing effect of monochromatic radiation of an atmosphere on a rotating Earth[J]. Proceedings of the Physical Society,1931,43(1):26. doi: 10.1088/0959-5309/43/1/305
    [11]
    CROFT T A,HOOGASIAN H. Exact ray calculations in a quasi-parabolic ionosphere with no magnetic field[J]. Radio science,2015,3(1):69-74.
    [12]
    RADICELLA S M. The NeQuick model genesis,uses and evolution[J]. Annals of geophysics,2009,52(3-4):417-422.
    [13]
    SONG Z Y. Accuracy assessment of Klobuchar model and NeQuick model in china[J]. Geomatics and information science of Wuhan University,2012,37(6):704-708.
    [14]
    BENT R B,LLEWELLYN S K,NESTERCZUK G,et al. The development of a highly-successful worldwide empirical ionospheric model and its use in certain aspects of space communications and worldwide total electron content investigations[M]. Washington D. C.:Naval Research Laboratory,1975.
    [15]
    BILITZA D. International reference ionosphere 2000[J]. Radio science,2001,36(2):261-275. doi: 10.1029/2000RS002432
    [16]
    BILITZA D,ALTADILL D,TRUHLIK V,et al. International Reference Ionosphere 2016:from ionospheric climate to real-time weather predictions[J]. Space weather:the international journal of research & applications,2017,15(2):418-429.
    [17]
    WANG C,HAJJ G,PI X,et al. Development of the Global Assimilative Ionospheric Model[J]. Radio science,2004,39(1):1-11.
    [18]
    TSAI L C,TSAI W H. Improvement of GPS/MET ionospheric profiling and validation using the Chung-Li ionosonde measurements and the IRI model[J]. Terrestrial atmospheric & oceanic sciences,2004,15(4):589-607.
    [19]
    NISHIO T. Multichannel beam-steering and beam-forming arrays for wireless communications[D]. Los Angeles:University of California,2003.
    [20]
    牛勤,胡元奎,吴伟,等. 数字波束形成系统多通道幅相校正方法及应用[J]. 电子技术与软件工程,2018(13):91-92.

    NIU Q,HU Y K,WU W,et al. Multi-channel amplitude-phase correction method and application for digital beam forming system[J]. Electronic technology & software engineering,2018(13):91-92. (in Chinese)
    [21]
    齐志强,穆仕博. 自适应波束形成技术在GNSS抗干扰中的应用[J]. 电光与控制,2014,21(10):110-113.

    QI Z Q,MU S B. Application of adaptive beam-forming technique in GNSS anti-jamming[J]. Electronics optics& control,2014,21(10):110-113. (in Chinese)
    [22]
    周晓慧,黄劲松,徐晓华,等. 电离层延迟及其特性的公式推导[J]. 全球定位系统,2018,43(5):43-47. doi: 10.13442/j.gnss.1008-9268.2018.05.008

    ZHOU X H,HUANG J S,XU X H,et al. Deduction of ionospheric delay and its features[J]. GNSS world of China,2018,43(5):43-47. (in Chinese) doi: 10.13442/j.gnss.1008-9268.2018.05.008
    [23]
    MA G,MARUYAMA T. Derivation of TEC and estimation of instrumental biases from GEONET in Japan[J]. Annales geophysicae,2003,21(10). DOI: 10.5194/angeo-21-2083-2003
    [24]
    王晓岚,马冠一. 基于双频GPS观测的电离层TEC与硬件延迟反演方法[J]. 空间科学学报,2014,34(2):168-179. doi: 10.11728/cjss2014.02.168

    WANG X L,MA G Y. Derivation of TEC and GPS hardware delay based on dual-frequency GPS observations[J]. Chinese journal of space science,2014,34(2):168-179. (in Chinese) doi: 10.11728/cjss2014.02.168
    [25]
    曲仁超,苗洪利,苟瑞锟,等. 全球电离层地图TEC数据的插值算法[J]. 空间科学学报,2021,41(3):411-416. doi: 10.11728/cjss2021.03.411

    QU R C,MIAO H L,GOU R K,et al. Interpolation algorithm of global ionospheric map product TEC[J]. Chinese journal of space science,2021,41(3):411-416. (in Chinese) doi: 10.11728/cjss2021.03.411

Catalog

    Article views (148) PDF downloads (65) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return