Reference format: | HE R R, XU Y F, LIU J, et al. A deep learning algorithm with soft threshold for automatic modulation recognition[J]. Chinese journal of radio science,2022,37(3):465-470. (in Chinese). DOI: 10.12265/j.cjors.2021052 |
[1] |
POPOOLA J J, OLST R V. A novel modulation-sensing method[J]. IEEE vehicular technology magazine,2011,6(3):60-69. doi: 10.1109/MVT.2011.941893
|
[2] |
O’SHEA T J, CORGAN J, CLANCY T C. Convolutional radio modulation recognition networks[C]// International Conference on Engineering Applications of Neural Networks, 2016.
|
[3] |
WEST N E, O’SHEA T J. Deep architectures for modulation recognition[C]// IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), 2017.
|
[4] |
RAJENDRAN S, MEERT W, GIUSTINIANO D, et al. Deep learning models for wireless signal classification with distributed low-cost spectrum sensors[J]. IEEE transactions on cognitive communications and networking,2018,4(3):433-445. doi: 10.1109/TCCN.2018.2835460
|
[5] |
O’SHEA T J, ROY T, CLANCY T C. Over-the-air deep learning based radio signal classification[J]. IEEE journal of selected topics in signal processing,2018,12(1):168-179. doi: 10.1109/JSTSP.2018.2797022
|
[6] |
PENG S, JIANG H, WANG H, et al. Modulation classification using convolutional neural network based deep learning model[C]//The 26th Wireless and Optical Communication Conference (WOCC), 2017.
|
[7] |
FRENZEL L. Principles of Electronic Communication Systems[M]. 北京: 清华大学出版社, 2008.
|
[8] |
ZHAO M, ZHONG S, FU X, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE transactions on industrial informatics,2020,16(7):4681-4690. doi: 10.1109/TII.2019.2943898
|
[9] |
CHEN Y, SHAO W, LIU J, et al. Automatic modulation classification scheme based on LSTM with random erasing and attention mechanism[J]. IEEE access,2020,8:154290-154300. doi: 10.1109/ACCESS.2020.3017641
|
[10] |
O’SHEA T J, WEST N. Radio machine learning dataset generation with gnu radio[C]// Proceedings of the GNU Radio Conference, 2016.
|
[11] |
郭坚, 漆轩. 基于残差网络的自动调制识别[J]. 计算机工程与设计,2019,40(9):2406-2410.
GUO J, QI X. Automatic modulation classification based on residual network[J]. Computer engineering and design,2019,40(9):2406-2410. (in Chinese)
|
1. |
张逸凡,雷斌,苏晨,刘光辉. 基于GWO-SA-LSTM模型的调制识别算法. 自动化与仪表. 2024(05): 1-5+9 .
![]() | |
2. |
艾散·帕合提,吾斯曼·玉山. 基于多端CNN的通信信号自动调制识别研究. 计算机测量与控制. 2023(08): 245-250+286 .
![]() | |
3. |
殷赞,王超杰,程子恒,陈渤,甄卫民,靳睿敏,杨会贇. 一种基于注意力机制卷积神经网络模型的自动调制识别算法. 电波科学学报. 2023(05): 773-779 .
![]() |