Reference format: | HAN X B, ZHANG H, LIANG B Y, et al. Designing graphene absorber in Terahertz band using HIE-FDTD method[J]. Chinese journal of radio science,2022,37(1):106-112 + 136. (in Chinese). DOI: 10.12265/j.cjors.2020276 |
[1] |
YE L F, CHEN X, ZHOU J L, et al. Actively tunable broadband terahertz absorption using periodically square-patterned graphene[J]. Applied physics express,2018,11(10):102201. doi: 10.7567/APEX.11.102201
|
[2] |
TROHALAKI S. Electronic properties of graphene modulated with chemical functionalization[J]. MRS bulletin,2012,37(2):102-103. doi: 10.1557/mrs.2012.16
|
[3] |
WANG H, HU Y H. Electrolyte-induced precipitation of graphene oxide[J]. Journal of colloid and interface science,2013,58(1):1245-1246.
|
[4] |
CAI Y J, XU K D. Tunable broadband terahertz absorber based on multilayer graphene-sandwiched plasmonic structure[J]. Optics express,2018,26(24):31693-31705. doi: 10.1364/OE.26.031693
|
[5] |
YE L, CHEN Y, CAI G, et al. Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range[J]. Optics express,2017,25(10):11223. doi: 10.1364/OE.25.011223
|
[6] |
SHAPOVAL O V, GOMEZ-DIAZ J S, PERRUISSEAU-CARRIER J, et al. Integral equation analysis of plane wave scattering by coplanar graphene-strip gratings in the THz range[J]. IEEE transactions on terahertz science & technology,2013,3(5):666-674.
|
[7] |
HU W, CUMMER S A. An FDTD model for low and high altitude lightning-generated EM fields[J]. IEEE transactions on antennas & propagation,2006,54(5):1513-1522.
|
[8] |
MOCK A. Padé approximant spectral fit for FDTD simulation of graphene in the near infrared[J]. Optical materials express,2012,2(6):771-781. doi: 10.1364/OME.2.000771
|
[9] |
UNNO M, ASAI H. HIE-FDTD method for hybrid system with lumped elements and conductive media[J]. IEEE microwave & wireless components letters,2011,21(9):453-455.
|
[10] |
NAMIKI T. 3-D ADI-FDTD method-unconditionally stable time-domain algorithm for solving full vector Maxwell’s equations[J]. IEEE transactions on microwave theory & techniques,2000,48(10):1743-1748.
|
[11] |
陈娟, 王建国, 许宁. 弱条件稳定时域有限差分方法[M]. 北京: 科学出版社, 2016.
|
[12] |
陈娟, 马寒啸, 施宏宇. HIE-FDTD方法的基本理论、运用和发展[J]. 现代应用物理,2019,10(2):1-6.
CHEN J, MA H X, SHI H Y. Basic theory, application and development of HIE-FDTD method[J]. Modern applied physics,2019,10(2):1-6. (in Chinese)
|
[13] |
WANG J B, WANG J L, ZHOU B H, et al. An efficient 3-D HIE-FDTD method with weaker stability condition[J]. IEEE transactions on antennas and propagation,2016,64(3):998-1004. doi: 10.1109/TAP.2015.2513100
|
[14] |
CHEN J, WANG J G. Three-dimensional dispersive hybrid implicit-explicit finite-difference time-domain method for simulations of graphene[J]. Computer physics communications,2016,207:211-216. doi: 10.1016/j.cpc.2016.06.007
|
[15] |
MOHARRAMI F, ATLASBAF Z. Simulation of multilayer graphene-dielectric metamaterial by implementing SBC model of graphene in the HIE-FDTD method[J]. IEEE transactions on antennas and propagation,2020,68(3):2238-2245. doi: 10.1109/TAP.2019.2948505
|
[16] |
徐健勋, 傅伟杰. 色散混合显隐式时域有限差分法的石墨烯仿真[J]. 电波科学学报,2019,34(2):239-243.
XU J X, FU W J. Graphene simulation by using dispersive hybrid implicit-explicit finite-difference time-domain method[J]. Chinese journal of radio science,2019,34(2):239-243. (in Chinese)
|
[17] |
DEY S, MITTRA R. A conformal finite-difference time-domain technique for modeling cylindrical dielectric resonators[J]. IEEE transactions on microwave theory and techniques,1999,47(9):1737-1739. doi: 10.1109/22.788616
|
[18] |
CAI Y J, GUO Y B, ZHOU Y G, et al. Tunable dual-band terahertz absorber with all-dielectric configuration based on graphene[J]. Optics express,2020,28(21). DOI: 10.1364/oe.409205
|
[19] |
杨利霞, 李玲玲, 朱婷, 等. 基于石墨烯一维太赫兹光子晶体电磁特性研究[J]. 电波科学学报,2016,31(2):262-268.
YANG L X, LI L L, ZHU T, et al. Terahertz electromagnetic characteristics of one-dimensional graphene-photonic crystal by FDTD method[J]. Chinese journal of radio science,2016,31(2):262-268. (in Chinese)
|
[20] |
CHEN P Y, ALU A. Terahertz metamaterial devices based on graphene nanostructures[J]. IEEE transactions on terahertz science & technology,2013,3(6):748-756.
|
[21] |
SOUNAS D L, CALOZ C. Gyrotropy and nonreciprocity of graphene for microwave applications[J]. IEEE transactions on microwave theory and techniques,2012,60(4):901-914. doi: 10.1109/TMTT.2011.2182205
|
[22] |
XU K D, LI J, ZHANG A, et al. Tunable multi-band terahertz absorber using single-layer square graphene ring structure with T-shaped graphene strips[J]. Optics express,2020,28(8):11482-11492. doi: 10.1364/OE.390835
|
[23] |
CHEN J, LI J, LIU Q H. Designing graphene-based absorber by using HIE-FDTD method[J]. IEEE transactions on antennas & propagation,2017,65(4):1896-1902.
|
[24] |
CHEN J, LI J, LIU Q H. Analyzing graphene-based absorber by using the WCS-FDTD method[J]. IEEE transactions on microwave theory & techniques,2017,65(10):3689-3696.
|
[25] |
ZHAI M L, PENG H L, WANG X H, et al. The conformal HIE-FDTD method for simulating tunable graphene-based couplers for THz applications[J]. IEEE transactions on terahertz science & technology,2015,5(3):368-376.
|
[26] |
XU N, CHEN J, WANG J. Stability condition of the dispersive HIE-FDTD method for the simulation of graphene[J]. International journal of numerical modelling,2019,32(3):2536.
|
[27] |
DEY S, MITTRA R. A conformal finite-difference time-domain technique for modeling cylindrical dielectric resonators[J]. IEEE transactions on microwave theory and techniques,1999,47(9):1739-1739. doi: 10.1109/22.788617
|