• Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS

Latest Notice

Latest Notice

WeChat Official Account

WeChat Official Account

HAN X B, ZHANG H, LIANG B Y, et al. Designing graphene absorber in Terahertz band using HIE-FDTD method[J]. Chinese journal of radio science,2022,37(1):106-112 + 136. (in Chinese). DOI: 10.12265/j.cjors.2020276
Reference format: HAN X B, ZHANG H, LIANG B Y, et al. Designing graphene absorber in Terahertz band using HIE-FDTD method[J]. Chinese journal of radio science,2022,37(1):106-112 + 136. (in Chinese). DOI: 10.12265/j.cjors.2020276

Designing graphene absorber in Terahertz band using HIE-FDTD method

More Information
  • Received Date: December 25, 2020
  • Available Online: May 16, 2021
  • The hybrid implicit-explicit FDTD (HIE-FDTD) method is used to numerically simulate the graphene absorber. The intraband conductivity of graphene is introduced into the HIE-FDTD method through the auxiliary difference equation (ADE) and the conformal technology is used to complete the characteristic analysis of the designed new graphene absorber. Numerical results show that the absorption rate of the absorber can reach 99.8% near 2.68 THz, and the working frequency of the absorber can be adjusted by controlling the chemical potential of graphene and the width of the ring in the terahertz frequency band. The ring-shaped absorber designed in this paper has a simple structure and has potential applications in terahertz devices such as detectors, sensors, and filters.
  • [1]
    YE L F, CHEN X, ZHOU J L, et al. Actively tunable broadband terahertz absorption using periodically square-patterned graphene[J]. Applied physics express,2018,11(10):102201. doi: 10.7567/APEX.11.102201
    [2]
    TROHALAKI S. Electronic properties of graphene modulated with chemical functionalization[J]. MRS bulletin,2012,37(2):102-103. doi: 10.1557/mrs.2012.16
    [3]
    WANG H, HU Y H. Electrolyte-induced precipitation of graphene oxide[J]. Journal of colloid and interface science,2013,58(1):1245-1246.
    [4]
    CAI Y J, XU K D. Tunable broadband terahertz absorber based on multilayer graphene-sandwiched plasmonic structure[J]. Optics express,2018,26(24):31693-31705. doi: 10.1364/OE.26.031693
    [5]
    YE L, CHEN Y, CAI G, et al. Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range[J]. Optics express,2017,25(10):11223. doi: 10.1364/OE.25.011223
    [6]
    SHAPOVAL O V, GOMEZ-DIAZ J S, PERRUISSEAU-CARRIER J, et al. Integral equation analysis of plane wave scattering by coplanar graphene-strip gratings in the THz range[J]. IEEE transactions on terahertz science & technology,2013,3(5):666-674.
    [7]
    HU W, CUMMER S A. An FDTD model for low and high altitude lightning-generated EM fields[J]. IEEE transactions on antennas & propagation,2006,54(5):1513-1522.
    [8]
    MOCK A. Padé approximant spectral fit for FDTD simulation of graphene in the near infrared[J]. Optical materials express,2012,2(6):771-781. doi: 10.1364/OME.2.000771
    [9]
    UNNO M, ASAI H. HIE-FDTD method for hybrid system with lumped elements and conductive media[J]. IEEE microwave & wireless components letters,2011,21(9):453-455.
    [10]
    NAMIKI T. 3-D ADI-FDTD method-unconditionally stable time-domain algorithm for solving full vector Maxwell’s equations[J]. IEEE transactions on microwave theory & techniques,2000,48(10):1743-1748.
    [11]
    陈娟, 王建国, 许宁. 弱条件稳定时域有限差分方法[M]. 北京: 科学出版社, 2016.
    [12]
    陈娟, 马寒啸, 施宏宇. HIE-FDTD方法的基本理论、运用和发展[J]. 现代应用物理,2019,10(2):1-6.

    CHEN J, MA H X, SHI H Y. Basic theory, application and development of HIE-FDTD method[J]. Modern applied physics,2019,10(2):1-6. (in Chinese)
    [13]
    WANG J B, WANG J L, ZHOU B H, et al. An efficient 3-D HIE-FDTD method with weaker stability condition[J]. IEEE transactions on antennas and propagation,2016,64(3):998-1004. doi: 10.1109/TAP.2015.2513100
    [14]
    CHEN J, WANG J G. Three-dimensional dispersive hybrid implicit-explicit finite-difference time-domain method for simulations of graphene[J]. Computer physics communications,2016,207:211-216. doi: 10.1016/j.cpc.2016.06.007
    [15]
    MOHARRAMI F, ATLASBAF Z. Simulation of multilayer graphene-dielectric metamaterial by implementing SBC model of graphene in the HIE-FDTD method[J]. IEEE transactions on antennas and propagation,2020,68(3):2238-2245. doi: 10.1109/TAP.2019.2948505
    [16]
    徐健勋, 傅伟杰. 色散混合显隐式时域有限差分法的石墨烯仿真[J]. 电波科学学报,2019,34(2):239-243.

    XU J X, FU W J. Graphene simulation by using dispersive hybrid implicit-explicit finite-difference time-domain method[J]. Chinese journal of radio science,2019,34(2):239-243. (in Chinese)
    [17]
    DEY S, MITTRA R. A conformal finite-difference time-domain technique for modeling cylindrical dielectric resonators[J]. IEEE transactions on microwave theory and techniques,1999,47(9):1737-1739. doi: 10.1109/22.788616
    [18]
    CAI Y J, GUO Y B, ZHOU Y G, et al. Tunable dual-band terahertz absorber with all-dielectric configuration based on graphene[J]. Optics express,2020,28(21). DOI: 10.1364/oe.409205
    [19]
    杨利霞, 李玲玲, 朱婷, 等. 基于石墨烯一维太赫兹光子晶体电磁特性研究[J]. 电波科学学报,2016,31(2):262-268.

    YANG L X, LI L L, ZHU T, et al. Terahertz electromagnetic characteristics of one-dimensional graphene-photonic crystal by FDTD method[J]. Chinese journal of radio science,2016,31(2):262-268. (in Chinese)
    [20]
    CHEN P Y, ALU A. Terahertz metamaterial devices based on graphene nanostructures[J]. IEEE transactions on terahertz science & technology,2013,3(6):748-756.
    [21]
    SOUNAS D L, CALOZ C. Gyrotropy and nonreciprocity of graphene for microwave applications[J]. IEEE transactions on microwave theory and techniques,2012,60(4):901-914. doi: 10.1109/TMTT.2011.2182205
    [22]
    XU K D, LI J, ZHANG A, et al. Tunable multi-band terahertz absorber using single-layer square graphene ring structure with T-shaped graphene strips[J]. Optics express,2020,28(8):11482-11492. doi: 10.1364/OE.390835
    [23]
    CHEN J, LI J, LIU Q H. Designing graphene-based absorber by using HIE-FDTD method[J]. IEEE transactions on antennas & propagation,2017,65(4):1896-1902.
    [24]
    CHEN J, LI J, LIU Q H. Analyzing graphene-based absorber by using the WCS-FDTD method[J]. IEEE transactions on microwave theory & techniques,2017,65(10):3689-3696.
    [25]
    ZHAI M L, PENG H L, WANG X H, et al. The conformal HIE-FDTD method for simulating tunable graphene-based couplers for THz applications[J]. IEEE transactions on terahertz science & technology,2015,5(3):368-376.
    [26]
    XU N, CHEN J, WANG J. Stability condition of the dispersive HIE-FDTD method for the simulation of graphene[J]. International journal of numerical modelling,2019,32(3):2536.
    [27]
    DEY S, MITTRA R. A conformal finite-difference time-domain technique for modeling cylindrical dielectric resonators[J]. IEEE transactions on microwave theory and techniques,1999,47(9):1739-1739. doi: 10.1109/22.788617

Catalog

    Article views (844) PDF downloads (90) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return