• Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS

Latest Notice

Latest Notice

WeChat Official Account

WeChat Official Account

DOU J W, CHEN Y J, ZHANG N, et al. On the channel modeling of intelligent controllable electro-magnetic-surface[J]. Chinese journal of radio science,2021,36(3):368-377. (in Chinese) DOI: 10.12265/j.cjors.2020195
Reference format: DOU J W, CHEN Y J, ZHANG N, et al. On the channel modeling of intelligent controllable electro-magnetic-surface[J]. Chinese journal of radio science,2021,36(3):368-377. (in Chinese) DOI: 10.12265/j.cjors.2020195

On the channel modeling of intelligent controllable electro-magnetic-surface

More Information
  • Received Date: September 06, 2020
  • Available Online: May 09, 2021
  • Published Date: June 29, 2021
  • One of the crucial aspects in the 6G research is to realize the intelligent reconfiguration of radio channel by deploying intelligent electro-magnetic-surfaces and the channel modeling in this area is the fundamental for future deployment and planning of electro-magnetic-surfaces as well as the analysis of coverage, capacity and other performance of network. In this article, the methodology of channel modeling is presented based on map-based hybrid channel model, ray tracing technology and the model of electro-magnetic surface reflection, which is suitable for the electro-magnetic-surface being deployed in a complex scenario. The proposed algorithm simplifies the modeling procedure and decreases the calculation loaded by modeling the intelligent electro-magnetic-surfaces as the multi-vitural logical base stations stimulated by multi-imping waves, which establishes the basis for the research of intelligent reconfiguration on radio propagation environment.
  • [1]
    PITSILLIDES A, LIASKOS C, TSIOLIARIDOU A, et al. Wireless communication paradigm: realizing programmable wireless environments through software-controlled metasurfaces: USA, US10547116B2 [P]. 2018-07-30.
    [2]
    王承祥, 黄杰, 王海明, 等. 面向6G的无线通信信道特性分析与建模[J]. 物联网学报,2020,4(1):19-32.

    WANG C X, HUANG J, WANG H M, et al. 6G oriented wireless communication channel characteristics analysis and modeling[J]. Chinese journal on internet of things,2020,4(1):19-32. (in Chinese)
    [3]
    DI RENZO M, ZAPPONE A, DEBBAH M, et al. Smart radio environments empowered by reconfigurable intelligent surfaces: how it works, state of research, and road ahead[J]. IEEE journal on selected areas in communications,2020,38(11):2450-2525. doi: 10.1109/JSAC.2020.3007211
    [4]
    张世全, 魏兵, 曾俊. 电磁超材料理论及应用[M]. 西安: 西安电子科技大学出版社, 2019.
    [5]
    张明习. 超材料概论[M]. 北京: 国防科技出版社, 2016.
    [6]
    PENDRY J B, HOLDEN A J, STEWART W J. Extremely low frequency plasmons in metallic mesostructures[J]. Physical review letters,1996,76(25):4337-4776.
    [7]
    PENDRY J B, HOLDEN A J, ROBBINS D J, et al. Magnetism form conductors and enhanced nonlinear phenomena[J]. Physical review letters,1999,47(11):2075-2084.
    [8]
    赵晓鹏, 刘亚红. 微波超材料与超表面中波的行为[M]. 北京: 科学出版社, 2019.
    [9]
    杨帆, 许慎恒, 刘骁, 等. 基于界面电磁学的新型相控阵天线[J]. 电波科学学报,2018,33(2):256-265.

    YANG F, XU S H, LIU X, et al. Novel phased array antennas based on surface electromagnetics[J]. Chinese journal of radio science,2018,33(2):256-265. (in Chinese)
    [10]
    WU R Y, CUI T J. Microcwave metamaterials: from exotic physics to novel information systems[J]. Front information technology & electronic engineering,2020,21(1):4-26.
    [11]
    HUM S V, P-CARRIER J. Reconfigurable relefectarrays and array lenses for dynamic antenna beam control[J]. IEEE transactions on antennas and propagation,2014,62(1):183-198. doi: 10.1109/TAP.2013.2287296
    [12]
    TANG W K, DAI J Y, CHEN M Z, et al. Programmable metasurface-based RF chain-free 8PSK wireless transmitter[J]. Electronics letters,2019,55(7):417-420. doi: 10.1049/el.2019.0400
    [13]
    CHEN K, FENG Y J, MONTICONE F, el al. A reconfigurable active Huygens ’ metalens[J]. Advanced materials,2017,29(17):14606422.
    [14]
    杨帆, 许慎恒, 毛艺霖, 一种基于数字相控电磁表面的新型相控阵: 中国, CN106848588 B[P], 2017.
    [15]
    蒋卫祥, 张信歌, 柏林, 等. 一种基于数字编码表征的方向图可重构平面阵列天线及其控制方法: 中国, CN110148838 A[P], 2019.
    [16]
    KAMODA H, IWASAKI T, TSUMOCHI J, et al. 60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters[J]. IEEE transactions on antennas and propagation,2011,59(7):2524-2531. doi: 10.1109/TAP.2011.2152338
    [17]
    许河秀. 超表面电磁调控机理与功能器件应用研究[M]. 北京: 科学出版社, 2019.
    [18]
    3GPP TR38.901 V16.0. 0 Study on channel model for frequencies from 0.5 to 100 GHz[S], 2019.
    [19]
    ITU-R M. 2412 Guidelines for evaluation of radio interface technologies for IMT-2020[S], 2017.
    [20]
    PEKKA K. IST-WINNER II deliverable 1.1. 2 v. 1.2, “WINNER II channel models”[R]. IST-WINNER2, Tech. Rep., 2007.
    [21]
    ZHAO X W, ABDO A M A, XU C, et al. Dimension reduction of channel correlation matrix using CUR- decomposition techniques for 3-D massive antenna system[J]. IEEE access,2018,6:3031-3039. doi: 10.1109/ACCESS.2017.2786681
    [22]
    ZHAO X W, DU F, GENG S Y, et al. Playback of 5G and beyond measured MIMO channels by an ANN-based modeling and simulation framework[J]. IEEE journal on selected areas in communications,2020,38(9):1945-1954. doi: 10.1109/JSAC.2020.3000827
    [23]
    ZHAO X W, ZHANG Y, GENG S Y, et al. Hybrid precoding for an adaptive interference decoding swipt system with full-duplex IoT devices[J]. IEEE internet of things journal,2020,7(2):1164-1177. doi: 10.1109/JIOT.2019.2953312
    [24]
    ZHAO X W, LIANG X L, LI S, et al. Two-cylinder and multi-ring GBSSM for realizing and modeling of vehicle-to-vehicle wideband MIMO channels[J]. IEEE transactions on intelligent transportation systems,2016,17(10):2787-2799. doi: 10.1109/TITS.2016.2526652
    [25]
    HEKKALA A, KYÖSTI P, DOU J W, et al. Map-based channel model for 5G wireless communications[C]//The 32nd URSI GASS. Montreal, 19-26 August, 2017.
    [26]
    LESZEK R. ICT-317669-METIS/D1.4: “METIS channel model, METIS 2020, Feb, 2015”[R], 2015.
    [27]
    ZHANG J H, TANG P, YU L, et al. Channel measurements and models for 6G: current status and future outlook[J]. Front information technology & electronic engineering,2020,21(1):39-61.
    [28]
    GLASSNER A S. An introduction to ray tracing[M]. Elsevier, 1989.
    [29]
    ITU-R P. 2040-1: effects of building materials and structures on radiowave propagation above about 100 MHz[S], 2015.
    [30]
    郭立新, 张民, 吴振森. 随机粗糙面与目标复合电磁散射的基本理论和方法[M]. 北京: 科学出版社, 2015.
    [31]
    何国瑜, 卢才成, 洪家才, 等. 电磁散射的计算和测量[M]. 北京: 北京航空航天大学出版社, 2006.
    [32]
    STRATTON J A, CHU L J. Diffraction theory and electromaganetic waves[J]. Physical review,1939,56:99-107. doi: 10.1103/PhysRev.56.99

Catalog

    Article views (1279) PDF downloads (261) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return