• Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS

Latest Notice

Latest Notice

WeChat Official Account

WeChat Official Account

FU H Y. Recent progress of stimulated electromagnetic emissions in space magnetized plasmas[J]. Chinese journal of radio science,2021,36(1):1-11. (in Chinese). DOI: 10.12265/j.cjors.2019200
Reference format: FU H Y. Recent progress of stimulated electromagnetic emissions in space magnetized plasmas[J]. Chinese journal of radio science,2021,36(1):1-11. (in Chinese). DOI: 10.12265/j.cjors.2019200

Recent progress of stimulated electromagnetic emissions in space magnetized plasmas

More Information
  • Received Date: October 29, 2019
  • Available Online: February 26, 2021
  • Published Date: February 27, 2021
  • Nonlinear interaction of high-power electromagnetic waves and magnetized plasmas produces a plethora of fundamental phenomena that can be exploited for powerful diagnostics of the earth’s ionospheric plasma. To establish a unified theory of magnetized stimulated electromagnetic emissions (SEEs) in space, we summarize possible parametric decay instabilities in magnetized plasmas. Then, we review the most recent progress of stimulated electromagnetic emissions during ionospheric modification experiments for the past decades. Important associated phenomena with SEEs are detailed outlined, including artificial ionization layer, multiple-scales plasma irregularities, wave-particle and wave-wave interaction mechanism, and low frequency EM wave generation. Finally, challenges and future will be discussed.
  • [1]
    PEDERSEN T, GUSTAVSSON B, MISHIN E, et al. Creation of artificial ionospheric layers using high-power HF waves[J]. Geophysical research letters, 2010, 37(2). DOI: 10.1029/2009GL041895
    [2]
    BERNHARDT P, SIEFRING C, BRICZINSKI S, et al. Large ionospheric disturbances produced by the HAARP HF facility[J]. Radio science,2016,51:1081-1093. doi: 10.1002/2015RS005883
    [3]
    KUO S, SNYDER A, KOSSEY P, et al. VLF wave generation by beating of two HF waves in the ionosphere[J]. Geophysics research letters,2011,38:L10608. doi: 10.1029/2011GL047514
    [4]
    INAN U S, GOŁKOWSKI M, CARPENTER D L, et al. Multi-hop whistler-mode ELF/VLF signals and triggered emissions excited by the HAARP HF heater[J]. Geophysics research letters,2004,31:L24805. doi: 10.1029/2004GL021647
    [5]
    MILIKH G, GUREVICH A, ZYBIN K, et al. Perturbations of GPS signals by the ionospheric irregularities generated due to HF-heating at triple of electron gyrofrequency[J]. Geophysics research letters,2008,35:L22102. doi: 10.1029/2008GL035527
    [6]
    KRUER W L. The physics of laser plasma interactions[M]. Redwood City: Addison-Wesley, 1988.
    [7]
    THIDÉ B, KOPKA H, STUBBE P. Observations of stimulated scattering of a strong high frequency radio wave in the ionosphere[J]. Physics review letters,1982,49:1561-1564. doi: 10.1103/PhysRevLett.49.1561
    [8]
    LEYSER T B. Stimulated electromagnetic emissions by high-frequency electromagnetic pumping of the ionospheric plasma[J]. Space science review,2001,98:223. doi: 10.1023/A:1013875603938
    [9]
    SCALES W A. Recent advances in ionospheric stimulated electromagnetic emission investigations [C]// The 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE). Hangzhou, 2018: 1-4.
    [10]
    NORIN L, LEYSER T B, NORDBLAD E, et al. Unprecedentedly strong and narrow electromagnetic emissions stimulated by high-frequency radio waves in the ionosphere[J]. Physics review letters,2009,102:1-4.
    [11]
    BERNHARDT P, SELCHER C, LEHMBERG R, et al. Determination of the electron temperature in the modified ionosphere over HAARP using the HF pumped stimulated Brillouin scatter (SBS) emission lines[J]. Annales geophysicae,2009,27:4409-4427. doi: 10.5194/angeo-27-4409-2009
    [12]
    BERNHARDT P, SELCHER C, LEHMBER R, et al. Stimulated Brillouin scatter in a magnetized ionospheric plasma[J]. Phyics review letters,2010,104:1-4.
    [13]
    BERNHARDT P A, SELCHER C A, KOWTHA S. Electron and ion Bernstein waves excited in the ionosphere by high power EM waves at the second harmonic of the electron cyclotron frequency[J]. Geophysics research letters,2011,38:1-5.
    [14]
    FU H, SCALES W A, BERNHARDT P A, et al. Stimulated Brillouin scatter and stimulated ion Bernstein scatter during electron gyro-harmonic heating experiments[J]. Radio science, 2013, 48: 1-10.
    [15]
    YELLU A D, SCALES W A, MAHMOUDIAN A, et al. First observations of narrowband stimulated electromagnetic emissions at the pump frequency second harmonic during ionosphere interaction experiments[J]. Geophysics research letters,2018,45:1-8. doi: 10.1002/grl.56368
    [16]
    FU H, SCALES W A, BERNHARDT P A, et al. Stimulated Brillouin scattering during electron gyro-harmonic heating at EISCAT[J]. Annales geophysicae,2015,33:983-990. doi: 10.5194/angeo-33-983-2015
    [17]
    BLAGOVESHCHENSKAYA N F, BORISOVA T D, YEOMAN T K, et al. Modification of the high latitude ionosphere F region by X-mode powerful HF radio waves: experimental results from multi-instrument diagnostics[J]. Journal of atmospheric and solar-terrestrial physics,2015,135:50-63. doi: 10.1016/j.jastp.2015.10.009
    [18]
    DJUTH F T, BERNHARDT P A, ZHANG L. Magnetized stimulated Brillioun scatter excited in the F region and sporadic E at Arecibo observatory[C]// Triennial Earth-Sun Summit, 20-24 May, 2018.
    [19]
    MAHMOUDIAN A, SCALES W A, BERNHARDT P A, et al. Investigation of ionospheric stimulated Brillouin scatter generated at pump frequencies near electron gyroharmonics[J]. Radio science, 2013, 48: 1-13.
    [20]
    BORDIKAR M R, SCALES W A, SAMIMI A R, et al. First observations of minority ion (H+) structuring in stimulated radiation during second electron gyro-harmonic heating experiments[J]. Geophysics research letters,2013,40:1479-1483. doi: 10.1002/grl.50327
    [21]
    FU H Y, JIANG M L, WANG K N, et al. Electron temperature inversion by stimulated Brillouin scattering during electron gyroharmonic heating at EISCAT[J]. Geophysical research letters,2020,47:e2020GL089747.
    [22]
    MAHMOUDIAN A, NOSSA E, ISHAM B, et al. NSEE yielding electron temperature measurements at the Arecibo observatory[J]. Journal of geophysical research: space physics,2019,124(5):3699-3708. doi: 10.1029/2019JA026594
    [23]
    BRODIN G, STENFLO L. Stimulated Brillouin scattering in magnetized plasmas[J]. Journal of plasma physics,2013,79(6):983-986. doi: 10.1017/S0022377813000664
    [24]
    STENFLO L, BRODIN G. Collisional contribution to stimulated scattering in plasmas[J]. Physics letters A,2014,378(5-6):549-550.
    [25]
    SAMIMI A, SCALES W A, FU H, et al. Ion gyro-harmonic structures in stimulated radiation during second electron gyro-harmonic heating: part I: theory[J]. Journal of geophysics research,2013,118:502-514.
    [26]
    SAMIMI A, SCALES W A, FU H, et al. Ion gyro-harmonic structures in stimulated radiation during second electron gyro-harmonic heating: part 2: simulations[J]. Journal of geophysics research: space physics,2014,119:1-17. doi: 10.1002/2012JA018503
    [27]
    BASOV N G, BYCHENKOV V Y, KROKHIN O N, et al. Second harmonic generation in a laser plasma[J]. Soviet journal of quantum electronics,1979,9(9):1081-1102. doi: 10.1070/QE1979v009n09ABEH009430
    [28]
    KARASHTIN A, KOROBKOV Y S, FROLOV V, et al. Stimulated radio emission of the ionospheric plasma at the second harmonic of the pump wave frequency[J]. Radiophysics and quantum electronics,1986,29(1):22-25. doi: 10.1007/BF01033998
    [29]
    BLAGOVESHCHENSKAYA N, KORNIENKO V, RIETVELD M, et al. Stimulated emissions around second harmonic of Tromsø heater frequency observed by long-distance diagnostic HF tools[J]. Geophysical research letters,1998,25(6):873-876. doi: 10.1029/98GL00492
    [30]
    SERGEEV E, GRACH S, SHINDIN A, et al. Artificial Ionospheric layers during pump frequency stepping near the 4th gyroharmonic at HAARP[J]. Physical review letters,2013,110:065002. doi: 10.1103/PhysRevLett.110.065002
    [31]
    FROLOV V L, ERUKHIMOV L M, METELEV S A, et al. Temporal behavior of artificial small-scale ionospheric irregularities: review of experimental results[J]. Journal of atmospheric and solar-terrestrial physics,1997,59(18):2317-2333. doi: 10.1016/S1364-6826(96)00126-5
    [32]
    PONOMARENKO P V, LEYSER T B, THIDÉ B, et al. New electron gyroharmonic effects in HF scatter from pump excited magnetic field-aligned ionospheric irregularities[J]. Journal of geophysical research: space physics,1999,104(A5):10081-10087. doi: 10.1029/1999JA900039
    [33]
    GUREVICH A. Nonlinear effects in the ionosphere[J]. Physics: Uspekhi 50,2007,11:1091-1121.
    [34]
    MAHMOUDIAN A, SCALES W A, TAYLOR S, et al. Artificial ionospheric GPS phase scintillation excited during high-power radiowave modulation of the ionosphere[J]. Radio science,2018,53(6):775-789. doi: 10.1029/2017RS006517
    [35]
    FU H, SCALES W A, BERNHARDT P A, et al. Asymmetry in stimulated emission polarization and irregularity evolution during ionospheric electron gyroharmonic heating[J]. Geophysical research letters,2018,45(18):9363-9371. doi: 10.1029/2018GL078957
    [36]
    HUANG J, KUO S P. A generation mechanism for the down-shifted peak in stimulated electromagnetic emission spectrum[J]. Journal of geophysics research,1995,100(A11):21433-21438. doi: 10.1029/95JA02302
    [37]
    HUSSEIN A A, SCALES W A, HUANG J. Theoretical and simulation studies of broad up-shifted sideband generation in ionospheric stimulated radiation[J]. Geophysics research letters,1998,25(7):955-958.
    [38]
    NAJMI A, ELIASSON B, SHAO X, et al. Simulations of ionospheric turbulence produced by HF heating near the upper hybrid layer[J]. Radio science,2016,51(6):704-717. doi: 10.1002/2015RS005866
    [39]
    FU H, SCALES W A. Kinetic modeling of stimulated electromagnetic emissions during ionospheric heating experiment[C]// The 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE). Hangzhou, 2018: 1-3.
    [40]
    WONG A Y, SANTORU J, SIVJEE G, et al. Active stimulation of the auroral plasma[J]. Journal of geophysics research,1981,86:7718. doi: 10.1029/JA086iA09p07718
    [41]
    MJØLHUS E. On linear conversion in a magnetized plasma[J]. Radio science,1990,25:1321-1339. doi: 10.1029/RS025i006p01321
    [42]
    DJUTH F, DUBOIS D. Temporal development of HF-excited Langmuir and ion turbulence at Arecibo[J]. Earth moon planets,2015,116:19-53. doi: 10.1007/s11038-015-9458-x
    [43]
    KOSCH M J, PEDERSEN T, RIETVELD M T, et al. Artificial optical emissions in the high-latitude thermosphere induced by powerful radio waves: an observational review[J]. Advance space research,2007,40:365-376. doi: 10.1016/j.asr.2007.02.061
    [44]
    STUBBE P, KOPKA H, THIDÉ B, et al. Stimulated electromagnetic emission: A new technique to study the parametric decay instability in the ionosphere[J]. Journal of geophysical research: space physics,1984,89(A9):7523-7536. doi: 10.1029/JA089iA09p07523
    [45]
    FEJER J A. Ionospheric modification and parametric instabilities[J]. Review of geophysics space physics,1979,17:135-153. doi: 10.1029/RG017i001p00135
    [46]
    KUO S, LEE M, KOSSEY P. Excitation of oscillating two-stream instability by upper hybrid pump in ionospheric heating experiments at Tromsø[J]. Geophysics research letters,1997,24:2969-2972. doi: 10.1029/97GL03054
    [47]
    DUBOIS D F, RUSSELL D A, CHEUNG P Y, et al. High-power high-frequency-induced Langmuir turbulence in the smooth ionosphere at Arecibo, I: theoretical predictions for altitude-resolved plasma line radar spectra[J]. Physics plasmas,2001,8(3):791-801. doi: 10.1063/1.1345703
    [48]
    UTLAUT W F, COHEN R. Modifying the ionosphere with intense radio waves[J]. Science,1971,174(4006):245-254. doi: 10.1126/science.174.4006.245
    [49]
    STRELTSOV A V, BERTHELIER J J, CHERNYSHOV A A, et al. Past, present and future of active radio frequency experiments in space[J]. Space science reviews,2018,214(8):118.
    [50]
    ZHANG J, FU H, SCALES W. FDTD analysis of propagation and absorption in nonuniform anisotropic magnetized plasma slab[J]. IEEE transactions on plasma science,2018,46(6):2146-2153. doi: 10.1109/TPS.2018.2830416
    [51]
    ZHANG Y, FU H, XIONG B. Reduced-order modeling methods of electromagnetic wave propagation in magnetized plasmas[C]// The 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE).Hangzhou, 2018: 1-4.
  • Related Articles

    [1]QIN Yilan, MA Jiayu, FU Haiyang, XU Feng. Electromagnetic modeling and plasma parameters inversion based on JEC-FDTD equivalent recurrent neural network[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2024, 39(3): 552-560. DOI: 10.12265/j.cjors.2023217
    [2]CHEN Wei, MA Qiqi, YANG Lixia, BO Yong. Study on electromagnetic wave propagation characteristics of inhomogeneous magnetized plasma with different incidence angles based on ISMM[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2024, 39(1): 65-71. DOI: 10.12265/j.cjors.2023100
    [3]PAN Xiaodong, WEI Guanghui, WAN Haojiang, LU Xinfu, LI Wei, WANG Yaping. Prediction model of blocking interference effects for electronic equipment under the condition of the dual-frequency narrow spectrum in-band electromagnetic radiation[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2020, 35(3): 377-385. DOI: 10.13443/j.cjors.2019060501
    [4]ZHANG Liang, LIU Yang, WANG Fei, WANG Tianting, WU Xianliang. Nonlinear target recognition based on electromagnetic scattering feature parameter extraction and data distribution analysis[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2019, 34(1): 52-59. DOI: 10.13443/j.cjors.2018081303
    [5]ZENG Xiaohu, MA Hong, PI Congzhi, YANG Peng, YAN Shun, YUAN Shaohua, SHI Jianfeng, ZHANG Yuming, MA Lin, PANG Shuping. Electromagnetic radiation of Xijiang traction substation[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2018, 33(5): 525-531. DOI: 10.13443/j.cjors.2017110201
    [6]LI Fukai, YANG Zhiqiang, HAO Chun. Application of weak signal nonlinear detection on MWD electromagnetic wave[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2018, 33(1): 48-55. DOI: 10.13443/j.cjors.2017101201
    [7]ZHANG Jing, FU Haiyang. Electromagnetic wave propagation in magnetized plasmas with arbitrary inclination angle[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2017, 32(6): 629-637. DOI: 10.13443/j.cjors.2017092601
    [8]MAN Li, MA Guanglin, CHE Haiqin. Anomalous absorption effect on magnetized plasma induced by ionospheric modification[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2017, 32(4): 434-440. DOI: 10.13443/j.cjors.2017021301
    [9]MA Guanglin, YAN Yubo, YANG Jutao, LÜ Libin. Stimulated Brillouin scattering in ionospheric modification[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2016, 31(6): 1029-1035. DOI: 10.13443/j.cjors.2016121601
    [10]SHI Lihua, ZHANG Liuhui, ZHANG Xiang, ZHOU Yinghui. Nonlinear effect of shielded cable transfer impedance by bulk current injection[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2014, 29(3): 515-520. DOI: 10.13443/j.cjors.2013060903
  • Cited by

    Periodical cited type(1)

    1. 陈靓,杨巨涛,何凌磊,李清亮,郝书吉,马广林,闫玉波,车海琴,梁勇敢,李海英,张文超. 极区受激电磁辐射实验研究. 地球物理学报. 2024(07): 2487-2495 .

    Other cited types(1)

Catalog

    Article views (839) PDF downloads (337) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return