基于广义PMCHWT-EFIE和子全域基函数的大规模介质-金属复合周期结构高效电磁算法

      Fast electromagnetic simulation of large-scale dielectric-metal periodic structures based on generalized PMCHWT-EFIE and sub-entire-domain basis function method

      • 摘要: 在计算大规模介质-金属复合周期结构的电磁散射时,传统积分方程方法存在未知量大、存储占用多和计算时间长等问题。本文采用广义Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT)-电场积分方程(electric field integral equation, EFIE)方法计算均匀介质金属复合结构的电磁响应。该方法通过在分界面处设置区域连接模型(contact-region modeling, CRM)来保证边界处的连续性。为加速子阵列阻抗矩阵填充,本文采用快速偶极子方法(fast dipole method, FDM)来提高计算效率并降低内存占用。结合子全域(sub-entire-domain, SED)基函数方法,子阵列的电流分布特征可被推广到大规模介质金属复合周期结构的电磁场计算中。数值算例表明,该方法能够在保证计算精度的同时大幅度降低计算代价,内存占用降低至商业软件Altair FEKO(使用快速多层多级子方法)的1/10,计算误差在2.6 dB以内。

         

        Abstract: Traditional integral methods may encounter some challenges, including massive unknowns, high storage requirements, and long computation times when calculating large-scale dielectric-metallic composite periodic structures. In this paper, the generalized Poggio-Miller-Chang-Harrington-Wu-Tsai(PMCHWT)-electric field integral equation (EFIE) method is used to calculate the dielectric-metallic structure with the contact-region modeling (CRM) technique to guarantee the continuity on the contact surface. To accelerate the filling of subarray impedance matrix, The fast dipole method (FDM) is introduced in this paper to reduce the computation time and storage requirements. Finally, the current distribution characteristics of subarrays are generalized to the composite dielectric-metallic periodic structures by the sub-entire-domain (SED) basis function method. Numerical results show that this method can significantly reduce computation time and memory usage while ensuring calculation accuracy. Compared with multilevel fast multipole method (MLFMM) of commercial software Altair FEKO, the computational memory is reduced by 1/10 and the calculation error is within 2.6 dB.

         

      /

      返回文章
      返回