肖高标, 熊灿, 刘睿, 袁斌, 毛军发. 基于频域广义传输矩阵方法的电磁散射特性分析[J]. 电波科学学报, 2020, 35(2): 178-191. doi: 10.13443/j.cjors.2019090203
      引用本文: 肖高标, 熊灿, 刘睿, 袁斌, 毛军发. 基于频域广义传输矩阵方法的电磁散射特性分析[J]. 电波科学学报, 2020, 35(2): 178-191. doi: 10.13443/j.cjors.2019090203
      XIAO Gaobiao, XIONG Can, LIU Rui, YUAN Bin, MAO Junfa. Analyzing electromagnetic scattering problems based on frequency domain generalized transition matrix method[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2020, 35(2): 178-191. doi: 10.13443/j.cjors.2019090203
      Citation: XIAO Gaobiao, XIONG Can, LIU Rui, YUAN Bin, MAO Junfa. Analyzing electromagnetic scattering problems based on frequency domain generalized transition matrix method[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2020, 35(2): 178-191. doi: 10.13443/j.cjors.2019090203

      基于频域广义传输矩阵方法的电磁散射特性分析

      Analyzing electromagnetic scattering problems based on frequency domain generalized transition matrix method

      • 摘要: 多尺度复杂电子系统的电磁场问题难以用单一的计算电磁学方法进行高效数值计算.基于区域分解方法和惠更斯等效原理,提出了频域广义传输矩阵(generalized transition matrix,GTM)方法:将系统分解为多个子模块,通过电场积分方程(electric field integreal equation,EFIE)把各个子模块的电磁特性进行提炼,再考虑所有子模块之间的电磁耦合,计算系统整体电磁场分布.GTM方法把多尺度问题转化为尺度相对比较单一的问题进行处理,在分析各种复合结构、非均匀各向异性介质、大型相控阵天线等电磁散射特性时,提供了灵活的解决方案.论文给出了GTM在手征介质、开口腔体以及Vivaldi相控阵天线电磁特性分析中的应用算例,当未知量个数压缩到原来的十分之一时,GTM计算结果与直接用矩量法(methed of moment,MoM)求解的计算结果非常吻合.GTM可以简洁地表示目标问题的电磁散射特征,与传统MoM相比,大幅度减少了基函数的数量,具有较高的计算精度和效率.

         

        Abstract: The electromagnetic fields in multi-scale complex electronic systems are difficult to compute with conventional methods in computational electromagnetics. Generalized transition matrix (GTM) method has been proposed based on domain decomposition method (DDM) and Huygens' equivalence principle, in which a complex system is divided into many sub-blocks. Every sub-block is analyzed independently to get its electromagnetic characteristics. By taking into account mutual couplings among all blocks, the electromagnetic field in the whole system can be calculated. According to generalized transition matrix method, a multi-scale system is turned into an equivalent system consisting of sub-blocks with roughly the same scale. It provides flexible solutions to analyze the electromagnetic scattering problems involved in complex systems such as scatterers with hybrid structures, inhomogeneous isotropic media, and large-scale phased antennas. Numerical examples of applying GTM to analyzing the electromagnetic properties of a chiral scatterer, open-ended cavity and a vivaldi antenna array are presented, in which the unknowns have been reduced to about 1/10 of their original ones, while the numerical results with GTM still agree very well with those obtained with method of moment (MoM) directly. The target scattering properties can be expressed concisely by the generalized transition matrix. Compared with traditional methods of moment, the number of basis function is greatly reduced via GTM, hence improving the computational efficiency.

         

      /

      返回文章
      返回