张景, 付海洋. 电磁波在任意磁偏角等离子体中的传播[J]. 电波科学学报, 2017, 32(6): 629-637. doi: 10.13443/j.cjors.2017092601
      引用本文: 张景, 付海洋. 电磁波在任意磁偏角等离子体中的传播[J]. 电波科学学报, 2017, 32(6): 629-637. doi: 10.13443/j.cjors.2017092601
      ZHANG Jing, FU Haiyang. Electromagnetic wave propagation in magnetized plasmas with arbitrary inclination angle[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2017, 32(6): 629-637. doi: 10.13443/j.cjors.2017092601
      Citation: ZHANG Jing, FU Haiyang. Electromagnetic wave propagation in magnetized plasmas with arbitrary inclination angle[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2017, 32(6): 629-637. doi: 10.13443/j.cjors.2017092601

      电磁波在任意磁偏角等离子体中的传播

      Electromagnetic wave propagation in magnetized plasmas with arbitrary inclination angle

      • 摘要: 本文将电流密度卷积时域有限差分(Current Density Convolution Finite Difference Time Domain,JEC-FDTD)方法扩展到求解任意磁偏角电磁波在磁化等离子体中的传播和共振吸收问题.首先,验证数值算法正确性,分析了法拉第旋转角效应,以及任意磁偏角电磁波在等离子体中的传播特性.然后,求解电磁波在磁化等离子体中的等离子体朗缪尔共振、电子回旋共振、高频混杂共振吸收特性.结合在电离层加热中的应用,重点分析了等离子体高频混杂共振吸收特性,得到了高频混杂共振激发的频率匹配条件.数值结果表明,高频混杂共振吸收是电离层加热的有效方式,对于解释电离层加热机制具有重要意义.

         

        Abstract: In this paper, a current density convolution finite difference time domain method (JEC-FDTD) is extended to solve the electromagnetic wave propagation and resonance absorption in magnetized plasmas with arbitrary inclination angle. Firstly, we verified the correctness of the numerical algorithm, and analyzed the Faraday rotation as well as the wave propagation in magnetized plasmas of arbitrary inclination angle. Then, we obtained the characteristics of three types of plasma resonance absorption including plasma resonance, electron cyclotron resonance, and upper-hybrid resonance. The model is also applied to simulate the resonance during ionospheric heating experiments by high-power high frequency (HF) radio waves. Numerical results indicate the upper-hybrid resonance condition can contribute to the maximum absorption for ionospheric heating, which are important to explain the physical mechanism for nonlinear wave and particle interaction during ionospheric heating experiment.

         

      /

      返回文章
      返回