计算电大尺寸目标的新型多层快速物理光学高效算法

      The novel multilevel fast physical optics efficient method for computing electrically large scatterers

      • 摘要: 为了快速准确地计算电大尺寸目标高频散射场,降低计算代价,本文提出了一种基于八叉树多层结构与二次曲面离散技术的多层快速物理光学(multilevel fast physical optics, MLFPO)算法。八叉树多层结构的引入能够充分利用并行技术对计算加速。此外,二次曲面离散技术可以更好地拟合凸散射体的表面,相较于平面三角形面片能有效降低未知量数目。在此基础上, 本文将MLFPO算法应用目标拓展到复杂的多层涂覆目标。数值算例表明,与商业软件FEKO中的PO算法相比,MLFPO算法在S、C、X、Ku四个波段的计算双站散射场误差在1.54 dB以内,计算速度随着频率增加可以提升8倍以上,计算存储度降低98%。MLFPO算法在确保物理光学散射场计算精度的同时能够降低计算代价,是分析电大尺寸目标高频电磁散射问题的有效方法。

         

        Abstract: In order to compute electrically large scatterers rapidly and accurately with less computational cost a multilevel fast physical optics (MLFPO) method based on an octree multilevel structure and quadratic mesh technique is proposed in this work. The octree multilevel technique makes full use of parallel techniques to further accelerate the computation. Additionally, the quadratic mesh technique provides a better fit to the surface of convex scatterers and reduces the number of unknowns compared with planar triangular patches effectively. Furthermore, this work extends the application of the MLFPO method from PEC to complex multilayer coated targets. Numerical examples demonstrate that the mean error of the PO and MLFPO method is within 1.54 dB in the S, C, X, and Ku bands. Compared to the PO method in the commercial software FEKO, the computational speed of the MLFPO method increases more than 8 times and the computational storage reduces 98%. The MLFPO method reduces computational costs while ensuring calculation accuracy, making it an efficient method for analyzing the electromagnetic scattering problem of electrically large smooth convex scatterers.

         

      /

      返回文章
      返回