杨巨涛,李清亮,陈靓,等. 高纬电离层调制加热辐射波特性分析[J]. 电波科学学报,2023,38(4):705-713. DOI: 10.12265/j.cjors.2023049
      引用本文: 杨巨涛,李清亮,陈靓,等. 高纬电离层调制加热辐射波特性分析[J]. 电波科学学报,2023,38(4):705-713. DOI: 10.12265/j.cjors.2023049
      YANG J T, LI Q L, CHEN J, et al. Analysis of the characteristics of modulated heating radiation wave in the high latitude ionosphere[J]. Chinese journal of radio science,2023,38(4):705-713. (in Chinese). DOI: 10.12265/j.cjors.2023049
      Citation: YANG J T, LI Q L, CHEN J, et al. Analysis of the characteristics of modulated heating radiation wave in the high latitude ionosphere[J]. Chinese journal of radio science,2023,38(4):705-713. (in Chinese). DOI: 10.12265/j.cjors.2023049

      高纬电离层调制加热辐射波特性分析

      Analysis of the characteristics of modulated heating radiation wave in the high latitude ionosphere

      • 摘要: 基于2017—2019年我国利用欧洲非相干散射(European Incoherent Scatter,EISCAT)科学联合会加热装置开展电离层调制加热的实验数据,分析获得了高纬度电离层调制加热激励ULF/VLF电磁波辐射特性. 实验采用自然电流调制和双频双波束调制两种加热模式,分析两种加热模式下加热功率、加热波极化、辐射频率和地磁扰动对ULF/VLF电磁波强度的影响. 研究结果表明:激励辐射波强度与加热功率近似成正比例关系,自然电流调制和双频双波束调制激励辐射波的功率比例系数分别约为1.7和2.1;相对O波极化方式,加热波采用X极化波更有利于激励ULF/VLF电磁波辐射;随着辐射波频率的增加,辐射波强度先增加后减小,自然电流调制激励辐射波强度最大值出现在2 kHz附近,双频双波束调制激励辐射波强度最大值出现在8~14 kHz;自然电流调制加热激励辐射源强度依赖于电离层中自然电流的大小,而双频双波束调制激励辐射波强度与自然电流强弱相关性较小. 最后,针对目前电离层调制加热的热点问题−双频双波束调制加热形成ULF/VLF辐射源到底处于电离层中什么位置,采用实验和理论相结合的分析方法,对比两种加热模式激励ULF/VLF电磁波传播特性的差异,结果表明双频双波束调制模式辐射源的传播特性更加符合辐射源位于F层情形.

         

        Abstract: This paper presents the radiation characteristics of ULF/VLF electromagnetic wave excited by the ionospheric modulated heating in the high-latitude based on the experimental data of the ionospheric modulated heating conducted by Chinese scientific researchers using the European Incoherent Scatter (EISCAT) heating facility in 2017−2019. The effects of heating power, heating wave polarization, radiation frequency and geomagnetic disturbance on the electromagnetic wave intensity of ULF/VLF under two modulated heating modes of natural current modulation (AM) and dual-frequency double-beam modulation (BW) are experimentally analyzed. The results show that the intensity of the excitation radiation wave is approximately proportional to the heating power, and the power ratio coefficients of AM and BW are about 1.7 and 2.1, respectively. The heating wave employed with X wave is more beneficial to stimulate ULF/VLF electromagnetic wave radiation when compared to employing O wave. With the increase of the radiation wave frequency, the intensity of the radiation wave first increases and then decreases, but the maximum intensity of the radiation wave excited by AM and BW heating occur at 2 kHz and 8−14 kHz, respectively. The intensity of the radiation source excited by AM depends on the magnitude of the natural current in the ionosphere, while the intensity of the radiation wave excited by BW has little correlations with the intensity of the natural current. Finally, in perspective of the current hot issue of ionospheric modulation heating, the question of where is the location of the BW source in the ionosphere is raised. The differences in the propagation characteristics of ULF/VLF electromagnetic waves excited by two modulated heating modes are compared by combining the experimental and theoretical analysis methods. It is confirmed that the radiation source formed in the BW mode is likely to be located in the F region, which is different from the AM mode.

         

      /

      返回文章
      返回