• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微信公众号

基于能量检测与Sevcik分形维数的协作频谱感知算法

彭艺 朱桢以 魏翔 谢钊萍

彭艺,朱桢以,魏翔,等. 基于能量检测与Sevcik分形维数的协作频谱感知算法[J]. 电波科学学报,xxxx,x(x): x-xx. DOI: 10.12265/j.cjors.2021313
引用本文: 彭艺,朱桢以,魏翔,等. 基于能量检测与Sevcik分形维数的协作频谱感知算法[J]. 电波科学学报,xxxx,x(x): x-xx. DOI: 10.12265/j.cjors.2021313
PENG Y, ZHU Z Y, WEI X, et al. Cooperative spectrum sensing algorithm based on improved energy detection and Sevcik fractal dimension[J]. Chinese journal of radio science,xxxx,x(x): x-xx. (in Chinese). DOI: 10.12265/j.cjors.2021313
Citation: PENG Y, ZHU Z Y, WEI X, et al. Cooperative spectrum sensing algorithm based on improved energy detection and Sevcik fractal dimension[J]. Chinese journal of radio science,xxxx,x(x): x-xx. (in Chinese). DOI: 10.12265/j.cjors.2021313

基于能量检测与Sevcik分形维数的协作频谱感知算法

doi: 10.12265/j.cjors.2021313
详细信息
    作者简介:

    彭艺:(1975—),女,博士,副教授,主要从事无线通信、路由技术、认知无线电技术方面的研究

    朱桢以:(1996—),男,硕士研究生,主要从事认知无线网络方面的研究

    魏翔:(1996—),男,硕士研究生,主要从事无线通信方面的研究

    谢钊萍:(1995—),女,硕士研究生,主要从事信道资源分配方面的研究

  • 中图分类号: TN92

Cooperative spectrum sensing algorithm based on improved energy detection and Sevcik fractal dimension

  • 摘要: 在认知无线网络中,针对单节点频谱感知易受到噪声不确定性的影响,传统的能量检测法在高噪声功率场景中检测性能较差等问题,根据Sevcik分形维数(Sevcik fractal dimension, SFD)对噪声不敏感、能够区分信号与噪声波形的特点,提出一种将自适应门限的能量检测法与SFD相结合的协作频谱感知方法.通过能量检测法对接收信号进行检测判决,然后由SFD对判定为主用户不存在的信号进行复检,并将所有检测结果进行K秩融合,根据融合结果得出最终判决. 仿真结果表明,本文提出的频谱感知方法对噪声不敏感,在低信噪比下的检测性能得到显著提高.
  • 图  1  集中式CR网络

    Fig.  1  Centralized cognitive radio network

    图  2  能量检测法基本检测流程

    Fig.  2  Framework of energy detection method

    图  3  SFD的频谱感知流程

    Fig.  3  Framework of SFD spectrum sensing

    图  4  CCS流程

    Fig.  4  Framework of CCS

    图  5  算法流程

    Fig.  5  Algorithm procedure

    图  6  频域SFD与能量检测对比

    Fig.  6  Frequency domain SFD vs. energy detection

    图  7  信号的频域SFD

    Fig.  7  Frequency domain SFD of signal

    图  8  三种分形维数的ROC曲线

    Fig.  8  The ROC curve of 3 fractal dimensions

    图  9  三种融合算法的ROC曲线

    Fig.  9  The ROC curve of 3 fusion rules

    图  10  检测概率Pd与SNR关系

    Fig.  10  Detection probability Pd vs. SNR

    图  11  本地检测的ROC曲线

    Fig.  11  The ROC curve of local sensing

    图  12  全局ROC曲线

    Fig.  12  The ROC of Global CSS

  • [1] MITOLA J, MAGUIRE G. Cognitive radio: making software radios more personal[J]. IEEE personal communications,1999,6(4):13-18. DOI: 10.1109/98.788210
    [2] 付彩梅, 李有明, 周桂莉, 等. 一种基于能量检测的协作式频谱感知算法[J]. 电信科学,2016,32(9):52-60.

    FU C M, LI Y M, ZHOU G L, et al. A new cooperation spectrum sensing algorithm based on energy detection[J]. Telecommunication science,2016,32(9):52-60. (in Chinese)
    [3] 张海波, 张劲, 李方伟. 基于能量检测的用户选择协作频谱感知[J]. 系统工程与电子技术,2018,40(3):658-664. DOI: 10.3969/j.issn.1001-506X.2018.03.26

    ZHANG H B, ZHANG J, LI F W. User selected collaborative spectrum sensing based on energy detection[J]. Systems engineering and electronics,2018,40(3):658-664. (in Chinese) DOI: 10.3969/j.issn.1001-506X.2018.03.26
    [4] 黄河, 袁超伟. 基于动态自适应双门限能量检测的序贯协作频谱感知算法[J]. 电子与信息学报,2018,40(5):1037-1043. DOI: 10.11999/JEIT170731

    HUANG H, YUAN C W. A sequential cooperative spectrum sensing algorithm based on dynamic adaptive double-threshold energy detection[J]. Journal of electronics&information technology,2018,40(5):1037-1043. (in Chinese) DOI: 10.11999/JEIT170731
    [5] KORDAN S, ABOLHASSANI B. Blind spectrum sensing for cognitive radio based on complexity measurement[C]// The 19th Iranian Conference on Electrical Engineering, New York: IEEE, 2011.
    [6] CHEN X B, CHEN H, CHEN Y. Spectrum sensing for cognitive ultra-wideband based on fractal dimensions [C]// International Workshop on Chaos- Fractals Theories and Applications. Hangzhou: IEEE, 2011: 363-367.
    [7] AN J, ZHANG L Y, ZHU P P, et al. A cooperative sensing method using Katz fractal dimension in frequency domain[C]// International Conference on Wireless Communication and Network Engineering. Beijing: DEStech Publications, 2017: 190-196.
    [8] SAHU A K, SINGH A, NANDAKUMAR S. Improved adaptive cooperative spectrum sensing in cognitive radio networks[C]// International Conference on Electronics, Materials Engineering and Nano-Technology. Kolkata: IEEE, 2018: 1-5.
    [9] MASHTA F, ALTABBAN W, WAINAKH M. A classification of the spectrum sensing techniques for cognitive radio[J]. International journal of recent technology and engineering,2019,8(4):11586-11595.
    [10] SEVCIK C. On fractal dimension of waveforms[J]. Chaos solitons fractals,2006,28(2):579-580. DOI: 10.1016/j.chaos.2005.07.003
    [11] 富爽, 李一兵, 叶方, 等. 利用频域Sevcik分形维数进行快速盲频谱感知[J]. 吉林大学学报(工学版),2014,44(3):854-860.

    FU S, LI Y B, YE F, et al. Fast blind spectrum sensing using Sevcik fractal dimension in frequency domain[J]. Journal of Jilin University (engineering and technology edition),2014,44(3):854-860. (in Chinese)
    [12] SALAMA G, TAHA S. Cooperative spectrum sensing and hard decision rules for cognitive radio network[C]// International Conference on Computer Applications & Information Security. Riyadh: IEEE, 2020.
    [13] CHEN Z W, ZHAO T D, JIAO J, et al. Availability analysis of multi-state weighted K-out-of-N systems with component performance requirements[C]// Reliability and Maintainability Symposium. Reno: IEEE, 2018.
    [14] ARJOUNE Y, KAABOUCH N. A comprehensive survey on spectrum sensing in cognitive radio networks: recent advances, new challenges, and future research directions[J]. Sensors,2019,19(1):126-157. DOI: 10.3390/s19010126
    [15] 彭涛, 郭晨, 王文博. 认知无线电网络高能效协作频谱感知技术[J]. 北京邮电大学学报,2010,33(4):93-96. DOI: 10.3969/j.issn.1007-5321.2010.04.019

    PENG T, GUO C, WANG W B. Energy-efficient cooperative spectrum sensing in cognitive radio networks[J]. Journal of Beijing University of Posts and Telecommunications,2010,33(4):93-96. (in Chinese) DOI: 10.3969/j.issn.1007-5321.2010.04.019
    [16] STELLER R, VACHTSEVANOS G, ECHAUZ J, et al. A comparison of waveform fractal dimension algorithms[J]. IEEE transactions on circuits & systems:fundamental theory & applications,2011,48(2):177-183.
    [17] MANDELBROT B B. The fractal geometry of nature[M]. New York: Freeman and Company, 1983.
    [18] YANG Z J, LI Y B, YE F. Cooperative spectrum sensing algorithm based on Katz fractal dimension[C]// International Conference on Signal Processing. Chengdu: IEEE, 2016: 1297-1300.
    [19] GUPTA K, MERCHANT S N, DESAI U B. Inherence of hard decision fusion in soft decision fusion and a generalized radix-2 multistage decision fusion strategy[J]. IEEE access,2018,6(4):55701-55711.
    [20] FOUDA H S, KABEEL A A, NASR M E, et al. Multi-dimensional small-scale cooperative spectrum sensing approach for cognitive radio receivers[J]. IEEE access,2021,5(9):76602-76613.
    [21] ALHAMAD R, WANG H X, YAO Y D. Cooperative spectrum sensing with random access reporting channels in cognitive radio networks[J]. IEEE transactions on vehicular technology,2017,8(66):7249-7261.
    [22] GUPTA M, YERMA G. Improved weighted cooperative spectrum sensing algorithm based on reliability in cognitive radio networks[C]// International Conference on Recent Trends in Electronics, Information & Communication Technology. Bangalore, 2016: 609-612.
  • 加载中
图(12)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  19
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-24
  • 录用日期:  2022-05-07
  • 网络出版日期:  2022-05-07

目录

    /

    返回文章
    返回