[1] |
BROWN J, WOODBRIDGE K, STOVE A, et al. Air target detection using airborne passive bistatic radar[J]. Electronics letters,2010,46(20):1396-1397. DOI: 10.1049/el.2010.1732
|
[2] |
DAWIDOWICZ B, KULPA K S, MALANOWSKI M, et al. DPCA detection of moving targets in airborne passive radar[J]. IEEE transactions on aerospace and electronic systems,2012,48(2):1347-1357. DOI: 10.1109/TAES.2012.6178066
|
[3] |
WARD J. Space time adaptive processing for airborne radar[R]. Lexington: Lincoln Laboratory, 1994.
|
[4] |
DAWIDOWICZ B, SAMCZYNSKI P, MALANO WSKI M, et al. Detection of moving targets with multichannel airborne passive radar[J]. IEEE aerospace and electronic systems magazine,2012,27(11):42-49. DOI: 10.1109/MAES.2012.6380825
|
[5] |
TAN D K P. Signal processing for airborne passive radar: interference suppression and space time adaptive processing techniques for transmissions of opportunity[J]. Journal of clinical investigation,2012,54(3):576-582.
|
[6] |
DENG Y Q, WANG J, WANG J, et al. Cascaded interference suppression method based on sparse representation for airborne passive radar[J]. IET radar sonar and navigation,2018,12(1):104-111. DOI: 10.1049/iet-rsn.2017.0152
|
[7] |
TAN D K P, LESTURGIE M, SUN H, et al. Space-time interference analysis and suppression for airborne passive radar using transmissions of opportunity[J]. IET radar sonar and navigation,2014,8(2):142-152. DOI: 10.1049/iet-rsn.2013.0190
|
[8] |
WOJACZEK P, COLONE F, CRISTALLINI D, et al. Reciprocal-filter-based STAP for passive radar on moving platforms[J]. IEEE transactions on aerospace and electronic systems,2019,55:967-988. DOI: 10.1109/TAES.2018.2867688
|
[9] |
GUO S, WANG J, MA H, et al. Modified blind equalization algorithm based on cyclostationarity for contaminated referent signal in airborne PBR[J]. Sensors,2020,20(3):788. DOI: 10.3390/s20030788
|
[10] |
DENG Y Q, WANG J, LUO Z, et al. Cascaded suppression method for airborne passive radar with contaminated reference signal[J]. IEEE access,2019,7:50317-50329. DOI: 10.1109/ACCESS.2019.2911136
|
[11] |
DENG Y Q, ZHANG, S W, ZHU Q X, et al. Clutter suppression methods based on reduced-dimension transformation for airborne passive radar with impure reference signals[J]. Journal of applied remote sensing,2021,15:016514.
|
[12] |
DAI J S, BAO X, XU W C, et al. Root sparse Bayesian learning for off-grid DOA estimation[J]. IEEE signal processing letters,2017,24:11-15.
|
[13] |
WU X H, ZHU W P, YAN J. Direction of arrival estimation for off-grids signals based on sparse Bayesian learning[J]. IEEE sensors journal,2016,16(7):2004-2016. DOI: 10.1109/JSEN.2015.2508059
|
[14] |
王伟, 胡子英, 龚琳舒. MIMO雷达三维成像自适应Off-grid校正方法[J]. 电子与信息学报,2019,41(6):1294-1301.WANG W, HU Z Y, GONG L S. Adaptive off-grid calibration method for MIMO radar 3D imaging[J]. Journal of electronics information technology,2019,41(6):1294-1301. (in Chinese)
|
[15] |
DUAN K Q; LIU W J; DUAN G Q, et al. Off-grid effects mitigation exploiting knowledge of the clutter ridge for sparse recovery STAP. IET Radar Sonar and Navigation, 2018, 12, 557-564.
|
[16] |
李志汇, 张永顺, 高乾, 等. 基于局部搜索OMP的网格失配STAP算法[J]. 系统工程与电子技术,2018,40(6):1221-1226. DOI: 10.3969/j.issn.1001-506X.2018.06.05LI Z H, ZHANG Y S, GAO Q, et al. Off-grid STAP algorithm based on local search orthogonal matching pursuit[J]. Systems engineering and electronics,2018,40(6):1221-1226. (in Chinese) DOI: 10.3969/j.issn.1001-506X.2018.06.05
|
[17] |
DENG Y Q, LI W G, ZHANG S W, et al. Clutter suppression method for off-grid effects mitigation in airborne passive radars with contaminated reference signals[J]. Sensors,2021,21(19):6339. DOI: 10.3390/s21196339
|