• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微信公众号

基于电谐振器加载的5G多频段小型化准全向天线

张建军 袁家德

张建军,袁家德. 基于电谐振器加载的5G多频段小型化准全向天线[J]. 电波科学学报,xxxx,x(x): x-xx. DOI: 10.12265/j.cjors.2021273
引用本文: 张建军,袁家德. 基于电谐振器加载的5G多频段小型化准全向天线[J]. 电波科学学报,xxxx,x(x): x-xx. DOI: 10.12265/j.cjors.2021273
ZHANG J J, YUAN J D. 5G multi-band miniaturized quasi-omnidirectional antenna based on ELC resonator loading[J]. Chinese journal of radio science,xxxx,x(x): x-xx. (in Chinese). DOI: 10.12265/j.cjors.2021273
Citation: ZHANG J J, YUAN J D. 5G multi-band miniaturized quasi-omnidirectional antenna based on ELC resonator loading[J]. Chinese journal of radio science,xxxx,x(x): x-xx. (in Chinese). DOI: 10.12265/j.cjors.2021273

基于电谐振器加载的5G多频段小型化准全向天线

doi: 10.12265/j.cjors.2021273
基金项目: 国家自然科学基金(62071125)
详细信息
    作者简介:

    张建军:(1996—),男,河南人,福州大学物理与信息工程学院硕士研究生,研究方向为通信天线的设计与应用

    袁家德:(1974—),男,江苏人,福州大学物理与信息工程学院副教授,博士,研究方向为通信天线、射频识别、射频电路等

    通讯作者:

    张建军 E-mail: zhangjianjun147@163.com

  • 中图分类号: TN82

5G multi-band miniaturized quasi-omnidirectional antenna based on ELC resonator loading

  • 摘要: 本文提出了一种偏心馈电基于电谐振(electric-LC, ELC)结构加载的5G多频段小型化准全向天线,利用分支贴片实现了多频段. 通过缺陷地结构(defective ground structure, DGS)和梳状结构,调节天线的阻抗匹配,结合弯折结构和ELC结构,实现了良好的全向辐射特性. 测试了天线S参数、增益和方向图. 测试结果表明:|S11|≤ −10 dB的阻抗带宽分别为0.82~0.94 GHz、1.76~3.63 GHz和4.80~4.90 GHz,覆盖了移动通信2G、3G、4G、5G等频段. 本文所提出的天线具有结构紧凑、频带宽、准全向辐射等特点,适用于移动通信终端设备.
  • 图  1  天线的结构图

    Fig.  1  Geometry of the proposed antenna

    图  2  参考天线1和本文天线的结构图

    Fig.  2  Geometry of referenced antenna 1 and the proposed antenna

    图  3  参考天线1和本文天线在2.1 GHz的方向图

    Fig.  3  Radiation patterns of referenced antenna 1 and the proposed antenna at 2.1 GHz

    图  4  参考天线1和本文天线在2.1 GHz的电流分布

    Fig.  4  The current distributions of referenced antenna 1 and the proposed antenna at 2.1 GHz

    图  5  ELC单元等效电路模型

    Fig.  5  Equivalent circuit model of ELC unit cell

    图  6  有无ELC结构加载的|S11|曲线

    Fig.  6  |S11| curves with or without ELC structure

    图  7  有无ELC结构加载的方向图

    Fig.  7  Radiation patterns with or without ELC structure

    图  8  本文天线在4.86 GHz的电流分布

    Fig.  8  The current distribution of the proposed antenna at 4.86 GHz

    图  9  ELC单元不同角度摆放时结构示意图

    Fig.  9  Illustrations of ELC unit cell placed at different angels

    图  10  ELC单元不同摆放角度对天线|S11|的影响

    Fig.  10  The influence of ELC unit cell placed at different angels on antenna |S11|

    图  11  ELC单元不同摆放角度的天线方向图

    Fig.  11  Radiation patterns of ELC unit cell placed at different angels

    图  12  有无梳状结构的|S11|曲线

    Fig.  12  |S11| curves with or without comb-shaped element

    图  13  参数L3对天线的性能影响

    Fig.  13  The influence of parameter L3 on antenna performance

    图  14  参数L4对天线的性能影响

    Fig.  14  The influence of parameter L4 on antenna performance

    图  15  天线实物图

    Fig.  15  Prototype of the proposed antenna

    图  16  天线仿真和实测|S11|曲线

    Fig.  16  Simulated and measured |S11| curves of the proposed antenna

    图  17  不同工作频率天线仿真和实测方向图

    Fig.  17  Simulated and measured radiation patterns of the proposed antenna at different operating frequencies

    图  18  天线仿真与测试增益和辐射效率

    Fig.  18  Simulated and measured realized gains and radiation efficiency of the proposed antenna

    表  1  天线结构尺寸

    Tab.  1  Parameters of the proposed antenna

    参数尺寸/mm参数尺寸/mm参数尺寸/mm
    L0 128 L8 8 D2 1.5
    L1 42.5 Lg 34.4 D3 2
    L2 63 W 20 D4 2.5
    L3 32 W1 2 D5 6.5
    L4 4.5 W2 2 D6 3.4
    L5 10 W3 18 D7 7.2
    L6 40 W4 5 D8 6
    L7 6 D1 2 H 1.6
    下载: 导出CSV

    表  2  天线性能比较

    Tab.  2  Comparison of antenna performance

    文献尺寸电尺寸带宽/GHz准全向
    辐射
    [5]208.7 mm×150 mm1.63λ0×1.18λ02.35~2.51
    4.96~6.00
    [7]90 mm×60 mm0.282λ0×0.188λ00.94~1.20、
    2.23~2.43、
    3.58~3.74、
    4.93~5.29
    [8]115 mm×42 mm0.307λ0×0.112λ00.80~1.16、
    1.70~2.83
    (|S11|≤ −6 dB带宽)
    [13]116 mm×40 mm0.319λ0×0.11λ00.825~0.960、
    1.7~2.7、
    5.7~5.9
    本文128 mm×20 mm0.349λ0×0.055λ00.82~0.94、
    1.76~3.63、
    4.8~4.9
    下载: 导出CSV
  • [1] LI Z, HAN J, MU Y, et al. Dual-band dual-polarized base station antenna with notch band for 2/3/4/5G communication systems[J]. IEEE antennas and wireless propagation letters,2020,19(12):2462-2466. DOI: 10.1109/LAWP.2020.3035559
    [2] 王尚, 杜正伟. 一种用于手持移动终端的九频段平面印制天线[J]. 电波科学学报,2015,30(1):43-48.

    WANG S, DU Z W. Nine-band planar printed antenna for mobile handsets[J]. Chinese journal of radio science,2015,30(1):43-48. (in Chinese)
    [3] 官伯然, 张胜杰. 一种小型化移动终端全网通天线[J]. 电波科学学报,2016,31(3):562-567.

    GUAN B R, ZHANG S J. A novel miniturized full netc- om antenna for mobile terminal[J]. Chinese journal of radio science,2016,31(3):562-567. (in Chinese)
    [4] ULLAH R, ULLAH S, ULLAH R, et al. A 10-ports MIMO antenna system for 5G smart-phone applications[J]. IEEE access,2020,8:218477-218488. DOI: 10.1109/ACCESS.2020.3042750
    [5] SIM C, CC CHEN, ZHANG X Y, et al. Very small-size uniplanar printed monopole antenna for dual-band WLAN laptop computer applications[J]. IEEE transactions on antennas and propagation,2017,65(6):2916-2922. DOI: 10.1109/TAP.2017.2695528
    [6] OSKLANG P, PHONGCHAROENPANICH C, AKKAR- AEKTHALIN P. Triband compact printed antenna for 2.4/3.5/5 GHz WLAN/WiMAX applications[J]. International journal of antennas and propagation,2019,2019(4):1-13.
    [7] LIU H, WEN P, ZHU S, et al. Quad-band CPW-fed monopole antenna based on flexible pentangle-loop radiator[J]. IEEE antennas & wireless propagation letters,2015,14:1373-1376.
    [8] ZHANG T, LI R L, JIN G P, et al. A Novel multiband planar antenna for GSM/UMTS/LTE/Zigbee/RFID mobile devices[J]. IEEE transactions on antennas and propagation,2011,59(11):4209-4214. DOI: 10.1109/TAP.2011.2164201
    [9] CHEN Y J, LIU T W, TU W H. CPW-fed penta-band slot dipole antenna based on comb-like metal sheets[J]. IEEE antennas and wireless propagation letters,2017,16:202-205. DOI: 10.1109/LAWP.2016.2569606
    [10] MICHEL A, NEPA P, GALLO M, et al. Printed wideband antenna for LTE band automotive applications[J]. IEEE antennas & wireless propagation letters,2017,16:1245-1248.
    [11] ZHAO D, YANG C, ZHU M, et al. Design of WLAN/ LTE/UWB antenna with improved pattern uniformity using ground-cooperative radiating structure[J]. IEEE transactions on antennas & propagation,2015,64(1):271-276.
    [12] WANG W, XUAN X, PAN P, et al. A low-profile dual-band omnidirectional Alford antenna for wearable WBAN applications[J]. Microwave and optical technology letters,2020,62(5):2040-2046. DOI: 10.1002/mop.32270
    [13] CUI J, ZHANG A, CHEN X. An omnidirectional multiband antenna for railway application[J]. IEEE antennas and wireless propagation letters,2019,19(1):54-58.
    [14] DONG, WANG, JUNPING, et al. A high-efficiency broadband omnidirectional UHF patch antenna applying surface plasmon polaritons for handheld terminals[J]. IEEE antennas & wireless propagation letters,2017,17(2):283-286.
    [15] ZHANG Y, ZHANG Y, LI D, et al. Compact vertically polarized omnidirectional ultra-wideband antenna and its band-notched filtering application[J]. IEEE access,2019,7(99):101681-101688.
    [16] TIWARI R N, SINGH P, KANAUJIA B K. A half cut design of low profile UWB planar antenna for DCS/PCS/WLAN applications[J]. International journal of RF and microwave computer-aided engineering, 2019, 29(9).
    [17] ZHU C, LI T, LI K, et al. Electrically small metamaterial-inspired tri-band antenna with meta-mode[J]. IEEE antennas and wireless propagation letters,2015,14:1738-1741. DOI: 10.1109/LAWP.2015.2421356
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  35
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-07
  • 录用日期:  2022-04-14
  • 网络出版日期:  2022-04-14

目录

    /

    返回文章
    返回