5G multi-band miniaturized quasi-omnidirectional antenna based on ELC resonator loading
-
摘要: 本文提出了一种偏心馈电基于电谐振(electric-LC, ELC)结构加载的5G多频段小型化准全向天线,利用分支贴片实现了多频段. 通过缺陷地结构(defective ground structure, DGS)和梳状结构,调节天线的阻抗匹配,结合弯折结构和ELC结构,实现了良好的全向辐射特性. 测试了天线S参数、增益和方向图. 测试结果表明:|S11|≤ −10 dB的阻抗带宽分别为0.82~0.94 GHz、1.76~3.63 GHz和4.80~4.90 GHz,覆盖了移动通信2G、3G、4G、5G等频段. 本文所提出的天线具有结构紧凑、频带宽、准全向辐射等特点,适用于移动通信终端设备.Abstract: In this paper, a 5G communication multi-band miniaturized quasi-omnidirectional antenna based on electric-LC (ELC) structure loading is proposed. Multi-band is realized by using branch patches. The defective ground structure (DGS) and comb-shaped slots structure are used to optimize the impedance matching. The meandered strip structure and ELC structure is loaded to achieve good omnidirectional radiation. The antenna S parameters, gain and pattern are tested. The measured results show that the |S11|≤−10 dB impedance bandwidth is 0.82-0.94 GHz, 1.76-3.63 GHz and 4.80-4.90 GHz, respectively, covering mobile communication 2G, 3G, 4G, 5G and other frequency bands. The antenna proposed in this paper has the advantages of small size, wide bandwidths, quasi-omnidirectional radiation, etc., and is suitable for wireless communication terminal equipment.
-
Key words:
- mobile communication /
- quasi-omnidirectional /
- ELC /
- multi-band /
- miniaturization
-
表 1 天线结构尺寸
Tab. 1 Parameters of the proposed antenna
参数 尺寸/mm 参数 尺寸/mm 参数 尺寸/mm L0 128 L8 8 D2 1.5 L1 42.5 Lg 34.4 D3 2 L2 63 W 20 D4 2.5 L3 32 W1 2 D5 6.5 L4 4.5 W2 2 D6 3.4 L5 10 W3 18 D7 7.2 L6 40 W4 5 D8 6 L7 6 D1 2 H 1.6 表 2 天线性能比较
Tab. 2 Comparison of antenna performance
文献 尺寸 电尺寸 带宽/GHz 准全向
辐射[5] 208.7 mm×150 mm 1.63λ0×1.18λ0 2.35~2.51
4.96~6.00否 [7] 90 mm×60 mm 0.282λ0×0.188λ0 0.94~1.20、
2.23~2.43、
3.58~3.74、
4.93~5.29否 [8] 115 mm×42 mm 0.307λ0×0.112λ0 0.80~1.16、
1.70~2.83
(|S11|≤ −6 dB带宽)否 [13] 116 mm×40 mm 0.319λ0×0.11λ0 0.825~0.960、
1.7~2.7、
5.7~5.9否 本文 128 mm×20 mm 0.349λ0×0.055λ0 0.82~0.94、
1.76~3.63、
4.8~4.9是 -
[1] LI Z, HAN J, MU Y, et al. Dual-band dual-polarized base station antenna with notch band for 2/3/4/5G communication systems[J]. IEEE antennas and wireless propagation letters,2020,19(12):2462-2466. DOI: 10.1109/LAWP.2020.3035559 [2] 王尚, 杜正伟. 一种用于手持移动终端的九频段平面印制天线[J]. 电波科学学报,2015,30(1):43-48.WANG S, DU Z W. Nine-band planar printed antenna for mobile handsets[J]. Chinese journal of radio science,2015,30(1):43-48. (in Chinese) [3] 官伯然, 张胜杰. 一种小型化移动终端全网通天线[J]. 电波科学学报,2016,31(3):562-567.GUAN B R, ZHANG S J. A novel miniturized full netc- om antenna for mobile terminal[J]. Chinese journal of radio science,2016,31(3):562-567. (in Chinese) [4] ULLAH R, ULLAH S, ULLAH R, et al. A 10-ports MIMO antenna system for 5G smart-phone applications[J]. IEEE access,2020,8:218477-218488. DOI: 10.1109/ACCESS.2020.3042750 [5] SIM C, CC CHEN, ZHANG X Y, et al. Very small-size uniplanar printed monopole antenna for dual-band WLAN laptop computer applications[J]. IEEE transactions on antennas and propagation,2017,65(6):2916-2922. DOI: 10.1109/TAP.2017.2695528 [6] OSKLANG P, PHONGCHAROENPANICH C, AKKAR- AEKTHALIN P. Triband compact printed antenna for 2.4/3.5/5 GHz WLAN/WiMAX applications[J]. International journal of antennas and propagation,2019,2019(4):1-13. [7] LIU H, WEN P, ZHU S, et al. Quad-band CPW-fed monopole antenna based on flexible pentangle-loop radiator[J]. IEEE antennas & wireless propagation letters,2015,14:1373-1376. [8] ZHANG T, LI R L, JIN G P, et al. A Novel multiband planar antenna for GSM/UMTS/LTE/Zigbee/RFID mobile devices[J]. IEEE transactions on antennas and propagation,2011,59(11):4209-4214. DOI: 10.1109/TAP.2011.2164201 [9] CHEN Y J, LIU T W, TU W H. CPW-fed penta-band slot dipole antenna based on comb-like metal sheets[J]. IEEE antennas and wireless propagation letters,2017,16:202-205. DOI: 10.1109/LAWP.2016.2569606 [10] MICHEL A, NEPA P, GALLO M, et al. Printed wideband antenna for LTE band automotive applications[J]. IEEE antennas & wireless propagation letters,2017,16:1245-1248. [11] ZHAO D, YANG C, ZHU M, et al. Design of WLAN/ LTE/UWB antenna with improved pattern uniformity using ground-cooperative radiating structure[J]. IEEE transactions on antennas & propagation,2015,64(1):271-276. [12] WANG W, XUAN X, PAN P, et al. A low-profile dual-band omnidirectional Alford antenna for wearable WBAN applications[J]. Microwave and optical technology letters,2020,62(5):2040-2046. DOI: 10.1002/mop.32270 [13] CUI J, ZHANG A, CHEN X. An omnidirectional multiband antenna for railway application[J]. IEEE antennas and wireless propagation letters,2019,19(1):54-58. [14] DONG, WANG, JUNPING, et al. A high-efficiency broadband omnidirectional UHF patch antenna applying surface plasmon polaritons for handheld terminals[J]. IEEE antennas & wireless propagation letters,2017,17(2):283-286. [15] ZHANG Y, ZHANG Y, LI D, et al. Compact vertically polarized omnidirectional ultra-wideband antenna and its band-notched filtering application[J]. IEEE access,2019,7(99):101681-101688. [16] TIWARI R N, SINGH P, KANAUJIA B K. A half cut design of low profile UWB planar antenna for DCS/PCS/WLAN applications[J]. International journal of RF and microwave computer-aided engineering, 2019, 29(9). [17] ZHU C, LI T, LI K, et al. Electrically small metamaterial-inspired tri-band antenna with meta-mode[J]. IEEE antennas and wireless propagation letters,2015,14:1738-1741. DOI: 10.1109/LAWP.2015.2421356 -