Comparison of low frequency multi-hop sky wave delay estimation algorithms
-
摘要: 低频天波传播时延的准确预测对其在远程导航授时中的应用潜力挖掘具有重要意义. 为了获得地-电离层波导中低频多跳天波模式的传播时延特性,同时验证典型多径时延估计算法在不同信道环境下的作用性能,文中首先采用时域有限差分(finite-difference time-domain, FDTD)电磁计算方法对不同电离层反射情况下的距发射台400 km处地面接收的低频天地波耦合总场进行正演预测,然后分别基于快速傅里叶变换(fast Fourier transform, FFT)/快速傅里叶逆变换(inverse fast Fourier transform, IFFT)频谱相除、多重信号分类(multiple signal classification, MUSIC)和旋转不变技术信号参数估计(estimating signal parameters via rotational invariance techniques, ESPRIT)三种算法对电磁场数值预测结果进行后处理,解耦得到不同模式(地波、一跳天波、二跳天波、三跳天波及四跳天波)的时延,并在此基础上分析比较了无噪声和信噪比(signal-noise ratio, SNR)为0 dB、−5 dB以及−10 dB情况下三种算法对多跳天波的时延估计结果. 结果表明,波跳次数越高,算法的检测能力越差. 对于文中所模拟的信道条件,在弱噪声(SNR=0 dB)、电离层强反射时,FFT/IFFT算法结果精度最高,时延误差不超过400 ns;而在强噪声(SNR= −10 dB)、电离层弱反射时,ESPRIT算法稳定性最好,误差范围在5 μs以内.Abstract: Accurate prediction of low-frequency (LF) sky wave is of great significance for its potential application in long-range navigation time service. In order to obtain the propagation delay characteristics of LF multi-hop sky waves in the earth-ionospheric waveguide and verify the performance of typical multipath time delay estimation methods in different channel environments, firstly, the finite-difference time-domain (FDTD) electromagnetic calculation method is used to predict the total coupling fields of sky and ground waves received on the ground 400 km away from the transmitting station under different ionospheric reflections. Then, the numerical prediction results are post processed based on the fast Fourier transform/inverse fast Fourier transform (FFT/IFFT) spectrum division, multiple signal classification (MUSIC) and estimating signal parameters via ratational invariance techniques (ESPRIT) algorithm respectively, and the time delays of different modes (ground wave, one hop sky wave, two hop sky wave, three hop sky wave and four hop sky wave) are decoupled. Finally, the time delay estimation results of multi-hop sky-wave without noise, SNR= −5 dB and SNR= −10 dB are compared. The results show that the higher the number of wave hops, the worse the detection ability of the three algorithms. In the case of weak noise (SNR=0 dB) and strong ionospheric reflection (channels considered in the study), the result accuracy of FFT/IFFT algorithm is the highest, and the delay error is no more than 400 ns, while in the case of strong noise (SNR= −10 dB) and weak ionospheric reflection, ESPRIT algorithm has the best stability and the error is within 5 μs.
-
表 1 不同加噪条件下基于三种算法估计得到的多跳天波时延结果
Tab. 1 Time delay results of multi-hop sky waves estimated by three algorithms under different noise conditions
模型 信道类型 算法 $ {\tau _1} $/μs $ \Delta {\tau _1} $/μs $ {\tau _2} $/μs $ \Delta {\tau _2} $/μs $ {\tau _3} $/μs $ \Delta {\tau _3} $/μs $ {\tau _4} $/μs $ \Delta {\tau _4} $/μs 1 无噪声 FFT/IFFT 1392.476 0.000 1555.391 0.000 1794.323 0.000 2083.150 0.000 MUSIC 1397.400 4.924 1555.200 −0.191 1793.900 −0.423 2082.500 −0.650 ESPRIT 1393.904 1.428 1555.676 0.285 1790.767 −3.556 2087.914 4.764 SNR=0 dB FFT/IFFT 1392.476 0.000 1555.391 0.000 1794.386 0.063 2082.838 −0.312 MUSIC 1398.100 5.624 1554.600 −0.791 1792.600 −1.723 2078.500 −4.650 ESPRIT 1392.500 0.024 1555.234 −0.157 1791.910 −2.413 2088.500 5.350 SNR= −5 dB FFT/IFFT 1392.476 0.000 1545.451 −9.940 1794.261 −0.062 2092.822 9.672 MUSIC 1395.700 3.224 1553.200 −2.191 1792.600 −1.723 2084.200 1.050 ESPRIT 1394.408 1.932 1553.298 −2.093 1793.900 −0.423 2087.543 4.393 SNR= −10 dB FFT/IFFT 1392.602 0.126 1564.830 9.439 1804.576 10.253 - - MUSIC 1394.400 1.924 1565.000 9.609 1790.800 −3.523 - - ESPRIT 1393.954 1.478 1555.496 0.105 1790.797 −3.526 - - 2 无噪声 FFT/IFFT 1394.103 0.000 1557.079 0.000 - - - - MUSIC 1394.000 −0.103 - - - - - - ESPRIT 1393.724 −0.379 - - - - - - SNR=0 dB FFT/IFFT 1388.225 −5.878 - - - - - - MUSIC 1393.700 −0.403 - - - - - - ESPRIT 1394.002 −0.101 - - - - - - SNR= −5 dB FFT/IFFT 1398.103 4.000 - - - - - - MUSIC 1395.300 1.197 - - - - - - ESPRIT 1396.467 2.364 - - - - - - SNR= −10 dB FFT/IFFT 1398.352 4.249 - - - - - - MUSIC 1392.900 −1.203 - - - - - - ESPRIT 1394.334 0.231 - - - - - - 3 无噪声 FFT/IFFT 1389.726 0.000 1545.201 0.000 1774.631 0.000 2053.074 0.000 MUSIC 1394.700 4.974 1545.200 −0.001 1775.200 0.569 2051.200 −1.874 ESPRIT 1393.904 4.178 1545.618 0.417 1774.732 0.101 2052.902 −0.172 SNR=0 dB FFT/IFFT 1389.663 −0.063 1545.138 −0.063 1774.631 0.000 2053.448 0.374 MUSIC 1395.500 5.774 1545.500 0.299 1774.300 −0.331 2048.700 −4.374 ESPRIT 1392.125 2.399 1545.421 0.220 1773.603 −1.028 2051.078 −1.996 SNR= −5 dB FFT/IFFT 1389.663 −0.063 1545.263 0.062 1774.691 0.060 2062.808 9.734 MUSIC 1392.300 2.574 1544.900 −0.301 1775.200 0.569 2063.300 10.226 ESPRIT 1394.705 4.979 1546.001 0.800 1774.622 −0.009 2055.072 1.998 SNR= −10 dB FFT/IFFT 1389.601 −0.125 1544.888 −0.313 1784.508 9.877 2034.167 −19.907 MUSIC 1388.000 −1.726 1540.200 −5.001 1778.000 3.369 - - ESPRIT 1393.726 4.000 1540.201 −5.000 1776.632 2.001 - - -
[1] 吴苗, 李方能, 苏晓庆, 等. 基于高斯平滑滤波的罗兰C周期识别新方法[J]. 海洋测绘,2013,33(6):80-82.WU M, LI F N, SU X Q, et al. The new method of Loran C cycle identification based on Gaussian smoothing filter[J]. Hydrographic surveying and charting,2013,33(6):80-82. (in Chinese) [2] MOHAMMED A F. Effect of Loran-C signal parameters on skywave delay estimation of IFFT technique[J]. Electronics letters,2003,39(14):1091-1093. DOI: 10.1049/el:20030670 [3] ZHANG K, WAN G, PU Y, et al. Loran-C skywave delay estimation using hybrid-WRELAX algorithm[J]. Electronics letters,2017,53(21):1426-1427. DOI: 10.1049/el.2017.2892 [4] BERENGER, J P. FDTD propagation of VLF-LF waves in the presence of ions in the earth-ionosphere waveguide[J]. Annals of telecommunications,2020,75:437-446. DOI: 10.1007/s12243-020-00756-5 [5] TRAN T H, BABA Y, SOMU V B, et al. FDTD modeling of LEMP propagation in the earth-ionosphere waveguide with emphasis on realistic representation of lightning source[J]. Journal of geophysical research: atmospheres,2017,122(12):918-937. [6] ZHOU L, WANG Q, MU Z, et al. Decomposition of LF resultant waves with multi-propagation modes in the earth-ionosphere waveguide[J]. IEEE transactions on antennas and propagation,2021,69(6):3443-3450. DOI: 10.1109/TAP.2020.3037749 [7] XU H, GU T, ZHENG J, et al. LF sky wave propagation excited by a horizontal electric dipole towards understanding of its radiation mechanism[J]. Applied computational electromagnetics society journal,2018,33(6):657-664. [8] 朱银兵, 许江宁, 王红星, 等. 基于IFFT频谱相除的罗兰C天地波识别新算法[J]. 电子与信息学报,2009,31(5):1153-1156.ZHU Y B, XU J N, WANG H X, et al. A new Loran C sky-wave and ground-wave identification algorithm based on IFFT spectral division[J]. Journal of electronics & information technology,2009,31(5):1153-1156. (in Chinese) [9] 曾辉艳, 华宇, 李实锋. 一种基于MUSIC算法的天地波识别方法[J]. 时间频率学报,2011,34(1):53-59. DOI: 10.3969/j.issn.1674-0637.2011.01.009ZENG H Y, HUA Y, LI S F. A method based on MUSIC algorithm for distinguishing between sky-wave and ground-wave[J]. Journal of time and frequency,2011,34(1):53-59. (in Chinese) DOI: 10.3969/j.issn.1674-0637.2011.01.009 [10] 孙延伟. eLoran信号处理关键技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.SUN Y W. Study on key technologies of eLoran signal processing[D]. Harbin: Harbin Engineering University, 2019. (in Chinese) [11] VANDERVEEN M C, VAN DER VEEN A J, PAULRAJ A. Estimation of multipath parameters in wireless communications[J]. IEEE transactions on signal processing,1998,46(3):682-690. DOI: 10.1109/78.661335 [12] THEVENOT M, BÉRENGER J P, MONEDIÈRE T, et al. A FDTD scheme for the computation of VLF-LF propagation in the anisotropic earth-ionosphere waveguide[J]. Annals of telecommunications,1999,54(5):297-310. [13] 周丽丽, 闫晶晶, 穆中林, 等. 各向同性电离层低频一跳天波时延特性研究[J]. 电子与信息学报,2020,42(7):1606-1610. DOI: 10.11999/JEIT190528ZHOU L L, YAN J J, MU Z L, et al. Study on time delay characteristics of low frequency one-hop sky waves in the isotropic ionosphere[J]. Journal of electronics and information technology,2020,42(7):1606-1610. (in Chinese) DOI: 10.11999/JEIT190528 [14] ZHOU X, WANG J, MA Q, et al. A method for determining D region ionosphere reflection height from lightning skywaves[J/OL]. Journal of atmospheric and solar-terrestrial physics, 2021, 221: 105692. [2021-09-15].https://doi.org/10.1016/j.jastp.2021.105692. -