An improved evaporation duct RSHMU model and prediction performance analysis
-
摘要: 针对稳定条件下蒸发波导RSHMU模型过于敏感不便使用的问题,引入BH91关系式、CB05关系式和SHEBA07关系式给出了相关的改进方法,并对不同风速以及不同相对湿度的敏感性进行了分析. 结果发现引入稳定条件下的剖面稳定度函数对蒸发波导高度诊断的敏感性改善不大. 进一步地,借鉴Paulus给出的订正方法,给出了P-RSHMU蒸发波导模型改进预测方法,有效解决了已有模型稳定条件下的不合理诊断结果. 与渤海梯度塔实测数据对比分析表明:稳定条件下P-RSHMU蒸发波导模型预测蒸发波导高度的平均误差为−1.02 m,均方根误差为1.49 m,显著优于已有RSHMU模型.Abstract: Aiming the problem that the RSHMU evaporation duct model is too sensitive and can’t be used conveniently under the stable condition, some improved methods introduced BH91 expression, CB05 expression and SHEBA07 expression are given in this paper. The sensitivity analysis results under different wind speed and relative humitivity show that changing the profile function does not improve the sensitivity of evaporation duct height diagnosis. Based on the revised method given by Paulus, an improved prediction method called P-RSHMU evaporation duct model is presented which effectively solves the unreasonable diagnosis results under the stable condition compared with the original model. Compared with the measured data of gradient tower in Bohai sea, it is shown that the average error of the modified model is −1.02 m and the root mean square error is 1.49 m in stable conditions. The modified model performs better than the original RSHMU model significantly.
-
Key words:
- evaporation duct /
- RSHMU model /
- P-RSHMU model /
- evaporation duct height /
- prediction performance.
-
表 1 不同模型预测性能对比表
Tab. 1 Comparison of different models prediction performance
预测模型 稳定条件下预测误差 平均误差/m 均方根误差/m RSHMU 7.30 13.24 RSHMU-BH91 5.10 8.47 RSHMU-CB05 6.80 11.70 RSHMU-SHEBA07 5.00 7.99 P-RSHMU −1.02 1.49 -
[1] JESKE H. State and limits of prediction methods of radar wave propagation conditions over sea[M]// Modern topics in microwave propagation and air-sea interaction. Boston: Reidel Publishers, 1973: 131-148. [2] ROTHERAM S. Radiowave propagation in the evaporation duct[J]. Maconi review,1974,37(192):18-40. [3] FAIRALL C W, DAVIDSON K L. Evaporation duct measurements in the mid-Atlantic[R]. Monterey: Navy Postgraduate School, 1978. [4] LIU W T, KATSAROS K B, BUSINGER J A. bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface[J]. Journal of the atmospheric sciences,1979(36):1722-1735. [5] PAULUS R A. Practical application of an evaporation duct model[J]. Radio science,1985,20(4):887-896. DOI: 10.1029/RS020i004p00887 [6] MUSSON-GENON L, GAUTHIER S, BRUTH E. A simple method to determine evaporation duct height in the sea surface boundary[J]. Radio science,1992,27(5):635-644. DOI: 10.1029/92RS00926 [7] BABIN S M, YOUNG G S, CARTON J A. A new model of the oceanic evaporation duct[J]. Journal of applied meteorology,1997,36(3):193-204. DOI: 10.1175/1520-0450(1997)036<0193:ANMOTO>2.0.CO;2 [8] FREDERICKSON P A, DAVIDSON K L, GOROCH A K. Operational bulk evaporation duct model for MORIAH[R]. Monterey: Naval Postgraduate School, 2000. [9] 刘成国, 黄际英, 江长荫, 等. 用伪折射率和相似理论计算海上蒸发波导剖面[J]. 电子学报,2001,29(7):970-972. DOI: 10.3321/j.issn:0372-2112.2001.07.030LIU C G, HUANG J Y, JIANG C Y, et al. Modeling evaporation duct over sea with pseudo-refractivity and similarity theory[J]. Acta electronica sinica,2001,29(7):970-972. (in Chinese) DOI: 10.3321/j.issn:0372-2112.2001.07.030 [10] 戴福山. 大气波导及其军事应用[M]. 北京: 解放军出版社, 2002. [11] IVANOV V K, SHALYAPIN V N, LEVADNYI Y V. Determination of the evaporation duct height from standard meteorological data[J]. Atmospheric and oceanic physics,2007,43(1):36-44. [12] 张利军, 郭相明, 李建儒. 蒸发波导RSHMU模型预测性能分析[J]. 微波学报,2021,37(4):58-63.ZHANG L J, GUO X M, LI J R. Prediction performance analysis of evaporation duct RSHMU model[J]. Journal of microwaves,2021,37(4):58-63. (in Chinese) [13] 张永刚. 海洋声光电波导效应及应用[M]. 北京: 电子工业出版社, 2014. [14] 谢凌霄, 田斌, 王石, 等. 热带海域内蒸发波导RSHMU模型分析[J]. 舰船电子工程,2015,35(9):88-90+100. DOI: 10.3969/j.issn.1672-9730.2015.09.023XIE L X, TIAN B, WANG S, et al. study on evaporation RSHMU model in tropical waters[J]. Ship electronic engineering,2015,35(9):88-90+100. (in Chinese) DOI: 10.3969/j.issn.1672-9730.2015.09.023 [15] 康士峰, 张玉生, 王红光. 对流层大气波导[M]. 北京: 科学出版社, 2014. [16] 丁菊丽, 费建芳, 黄小刚, 等. 稳定层结条件下非线性相似函数对蒸发波导模型的改进[J]. 热带气象学报,2011,27(3):410-416. DOI: 10.3969/j.issn.1004-4965.2011.03.015DING J L, FEI J F, HUANG X G, et al. Improvement to the evaporation duct model by introducing nonlinear similarity functions in stable conditions[J]. Journal of tropical meteorology,2011,27(3):410-416. (in Chinese) DOI: 10.3969/j.issn.1004-4965.2011.03.015 [17] HOLTSLAG AAM, DE BRUIN HAR. Applied modeling of the nighttime surface energy balance over land[J]. Journal of applied meteorology,1988,27:689-687. DOI: 10.1175/1520-0450(1988)027<0689:AMOTNS>2.0.CO;2 [18] BELJAARS ACM, HOLTSLAG AAM. Flux parameterization over land surfaces for atmospheric models[J]. Journal of applied meteorology,1991,30:327-341. DOI: 10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2 [19] CHENG Y G, BRUTSAERT W. Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer[J]. Bound-layer meteorology,2005,114:519-538. DOI: 10.1007/s10546-004-1425-4 [20] GRACHEV A A, ANDREAS E L. SHEBA flux-profile relationships in the stable atmospheric boundary layer[J]. Bound-layer meteorology,2007,124:315-333. DOI: 10.1007/s10546-007-9177-6 [21] 张超, 张利军, 王红光, 等. 海上湍流通量与蒸发波导高度计算及相关性分析[J]. 电波科学学报,2020,35(6):832-840. DOI: 10.13443/j.cjors.2020061601ZHANG C, ZHANG L J, WANG H G, et al. Calculation and correlation analysis of turbulent flux and evaporation duct height at sea[J]. Chinese journal of radio science,2020,35(6):832-840. (in Chinese) DOI: 10.13443/j.cjors.2020061601 -