• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微信公众号

一次伴随雷达异常地物回波的超视距探测成因分析与数值模拟研究

胡昊 丁菊丽 张羽 赵小峰 葛晶晶 梁志超

胡昊,丁菊丽,张羽,等. 一次伴随雷达异常地物回波的超视距探测成因分析与数值模拟研究[J]. 电波科学学报,2022,37(2):189-197. DOI: 10.12265/j.cjors.2021219
引用本文: 胡昊,丁菊丽,张羽,等. 一次伴随雷达异常地物回波的超视距探测成因分析与数值模拟研究[J]. 电波科学学报,2022,37(2):189-197. DOI: 10.12265/j.cjors.2021219
HU H, DING J L, ZHANG Y, et al. Cause analysis and numerical simulation research of over-the-horizon detection accompanied with radar anomalous terrain echo[J]. Chinese journal of radio science,2022,37(2):189-197. (in Chinese). DOI: 10.12265/j.cjors.2021219
Citation: HU H, DING J L, ZHANG Y, et al. Cause analysis and numerical simulation research of over-the-horizon detection accompanied with radar anomalous terrain echo[J]. Chinese journal of radio science,2022,37(2):189-197. (in Chinese). DOI: 10.12265/j.cjors.2021219

一次伴随雷达异常地物回波的超视距探测成因分析与数值模拟研究

doi: 10.12265/j.cjors.2021219
基金项目: 国家自然科学基金(41775017,41775027)
详细信息
    作者简介:

    胡昊:(1993—),男,吉林人,中国人民解放军31110部队助理工程师,硕士,研究方向为军事气象海洋保障

    丁菊丽:(1983—),女,江苏人,国防科技大学气象海洋学院副教授,博士,研究方向为大气波导形成机理、实时诊断和数值模拟研究

    张羽:(1983—),男,福建人,中国人民解放军94816部队工程师,硕士,研究方向为气象学

    通讯作者:

    丁菊丽 E-mail: dingjl1983@163.com

  • 中图分类号: P406

Cause analysis and numerical simulation research of over-the-horizon detection accompanied with radar anomalous terrain echo

  • 摘要: 大气波导对电磁波的陷获作用可以通过雷达超视距探测和异常地物回波等现象被直观感知和捕获. 文中基于欧洲中期数值预报中心(European Centre for Medium-Range Weather Forecasts, ECMWF) ERA5再分析资料、葵花卫星云图和WRF4.2模式,对福建中南部及粤东沿海天气雷达探测到的一次伴随异常地物回波的超视距探测现象开展成因分析和数值模拟研究. 研究结果表明:此次大范围异常地物回波的出现与台湾海峡持续存在的显著大气波导过程有关. 台湾海峡受高空槽后下沉运动与低空暖脊共同影响,存在逆温层结与强烈的湿度随高度锐减层,有利于大气波导形成;模拟时段中后期,台湾海峡几乎被顶高200~600 m的表面波导全覆盖,且波导强度持续增强,最终整体强度达到40 M 单位以上. 进一步利用WRF模式模拟预报的气象雷达传播路径上非均匀大气波导廓线,输入电磁波传播模型,结果与雷达实测回波的主体结构吻合,证实了利用中尺度模式开展大气波导预报与传播应用的良好前景.
  • 图  1  葵花卫星红外云图

    Fig.  1  Himawari satellite infrared cloud images

    图  2  厦门站气象雷达基本反射率回波图

    Fig.  2  Xiamen station weather radar echo map of base reflectivity

    图  3  不同时刻位势高度、相对湿度、温度及风场合成图

    Fig.  3  Different times’ composite figures of geopotential height, relative humidity, temperature and wind

    图  4  2020年4月29日18时平潭、泉州、厦门、澎湖列岛、东山单点廓线

    Fig.  4  Pingtan, Quanzhou, Xiamen, Penghu Islands, Dongshan single point profiles at 18:00 on April 29, 2020

    图  5  模拟区域网格设定

    Fig.  5  Simulation domains setting

    图  6  模拟波导类型、波导强度及波导顶高

    Fig.  6  Simulated duct type, duct strength and duct top height

    图  7  2020年5月1日1时逐小时累积降水量

    Fig.  7  Hour-by-hour cumulative precipitation at 01:00 on May 1, 2020

    图  8  厦门站5月1日1时非均匀M模拟廓线

    Fig.  8  Simulated Xiamen station non-uniform M profile at 01:00 on May 1, 2020

    图  9  模拟厦门站气象雷达探测概率

    Fig.  9  Simulated detection probability of weather radar at Xiamen Station

  • [1] 姚展予, 赵柏林, 李万彪, 等. 大气波导特征分析及其对电磁波传播的影响[J]. 气象学报,2000,58(5):605-616. DOI: 10.3321/j.issn:0577-6619.2000.05.009

    YAO Z Y, ZHAO B L, LI W B, et al. The analysis on characteristics of atmospheric duct and its effects on the propagation of electromagnetic wave[J]. Acta meteorologica sinica,2000,58(5):605-616. (in Chinese) DOI: 10.3321/j.issn:0577-6619.2000.05.009
    [2] 姚洪滨, 王桂军. 大气波导对舰载雷达探测距离的影响[J]. 雷达与对抗,2005(1):5-7.

    YAO H B, WANG G J. The influence of the atmospheric duct on the detecting range of shipborne radars[J]. Radar & ECM,2005(1):5-7. (in Chinese)
    [3] 盛楠. 大气波导对舰载通信距离的影响[J]. 舰船电子对抗,2020,43(4):55-59.

    SHENG N. Influence of atmospheric waveguide on ship-borne communication distance[J]. Shipborne electronic countermeasure,2020,43(4):55-59. (in Chinese)
    [4] 戴福山, 李群, 董双林, 等. 大气波导及其军事应用[M]. 北京: 解放军出版社, 2002.
    [5] 张玉生, 郭相明, 赵强, 等. 大气波导的研究现状与思考[J]. 电波科学学报,2020,35(6):813-831. DOI: 10.13443/j.cjors.2020072401

    ZHANG Y S, GUO X M, ZHAO Q, et al. Research status and thinking of atmospheric duct[J]. Chinese journal of radio science,2020,35(6):813-831. (in Chinese) DOI: 10.13443/j.cjors.2020072401
    [6] 胡晓华, 费建芳, 李娟, 等. 一次受台风影响的大气波导过程分析和数值模拟[J]. 海洋预报,2007,24(2):17-25. DOI: 10.3969/j.issn.1003-0239.2007.02.003

    HU X H, FEI J F, LI J, et al. Analysis and numerical simulation research of atmospheric duct affected by typhoon[J]. Marine forecasts,2007,24(2):17-25. (in Chinese) DOI: 10.3969/j.issn.1003-0239.2007.02.003
    [7] 胡晓华, 费建芳, 张翔, 等. 一次大气波导过程的数值模拟[J]. 气象科学,2008,28(3):294-300. DOI: 10.3969/j.issn.1009-0827.2008.03.010

    HU X H, FEI J F, ZHANG X, et al. Numerical simulation of an atmospheric duct[J]. Scientia meteorological sinica,2008,28(3):294-300. (in Chinese) DOI: 10.3969/j.issn.1009-0827.2008.03.010
    [8] HAACK T, WANG C G, GARRETT S, et al. Mesoscale modeling of boundary layer refractivity and atmospheric ducting[J]. Journal of applied meteorology and climatology,2010,49(12):2437-2457. DOI: 10.1175/2010JAMC2415.1
    [9] 刘桂艳, 高山红, 王永明, 等. 台风外围下沉区大气波导成因的数值模拟[J]. 应用气象学报,2012,23(1):77-88. DOI: 10.3969/j.issn.1001-7313.2012.01.009

    LIU G Y, GAO S H, WANG Y M, et al. Numerical simulation of atmospheric duct in typhoon subsidence area[J]. Journal of applied meteorological science,2012,23(1):77-88. (in Chinese) DOI: 10.3969/j.issn.1001-7313.2012.01.009
    [10] 袁夏玉, 高山红, 王永明, 等. 一次海雾过程大气波导形成机理的数值研究[J]. 中国海洋大学学报:自然科学版,2013,43(1):17-26.

    YUAN X Y, GAO S H, WANG Y M, et al. Numerical modeling study on the formation mechanism of an atmospheric duct during a sea fog event[J]. Periodical of Ocean University of China,2013,43(1):17-26. (in Chinese)
    [11] DING J L, FEI J F, HUANG X G, et al. Observational occurrence of tropical cyclone ducts from dropsonde data[J]. Journal of applied meteorology and climatology,2013,52(5):1221-1236. DOI: 10.1175/JAMC-D-11-0256.1
    [12] FEI J F, DING J L, HUANG X G, et al. Numerical study on the impacts of the bogus data assimilation and sea spray parameterization on typhoon ducts[J]. Acta meteorologica sinica,2013,27(3):308-321. DOI: 10.1007/s13351-013-0303-8
    [13] ZHAO Q Y, HAACK T, MCLAY J, et al. Ensemble prediction of atmospheric refractivity conditions for EM propagation[J]. Journal of applied meteorology and climatology,2016,55(10):2113-2130. DOI: 10.1175/JAMC-D-16-0033.1
    [14] 郝晓静, 李清亮, 郭立新, 等. 基于 MM5V3 的大气波导预报可靠性和准确度分析[J]. 电波科学学报,2017,32(6):725-734. DOI: 10.13443/j.cjors.2017072001

    HAO X J, LI Q L, GUO L X, et al. Reliability and accuracy to atmospheric duct prediction based on MM5V3[J]. Chinese journal of radio science,2017,32(6):725-734. (in Chinese) DOI: 10.13443/j.cjors.2017072001
    [15] 胡昊, 费建芳, 丁菊丽, 等. 0920号超强台风“卢碧”引起的强海上大气波导成因分析与数值模拟研究[J]. 气象学报,2018,76(4):130-144.

    HU H, FEI J F, DING J L, et al. Cause analysis and numerical simulation research of strong marine typhoon duct caused by super typhoon “Lupit” (0920)[J]. Acta meteorologica sinica,2018,76(4):130-144. (in Chinese)
    [16] 王海斌, 张利军, 王红光. 南海海区低空大气波导气候学分析[J]. 电波科学学报,2019,34(5):633-642. DOI: 10.13443/j.cjors.2019010701

    WANG H B, ZHANG L J, WANG H G. The climatological analysis of the lower atmospheric ducts in South China Sea[J]. Chinese journal of radio science,2019,34(5):633-642. (in Chinese) DOI: 10.13443/j.cjors.2019010701
    [17] 成印河, 游志伟, 张玉生, 等. ERA-I 数据在南海大气折射率环境中的应用评估[J]. 电波科学学报,2020,35(6):885-895. DOI: 10.13443/j.cjors.2020061501

    CHENG Y H, YOU Z W, ZHANG Y S, et al. Evaluation on the application of atmospheric refractive index from ERA-I data over the South China Sea[J]. Chinese journal of radio science,2020,35(6):885-895. (in Chinese) DOI: 10.13443/j.cjors.2020061501
    [18] 梁志超, 丁菊丽, 费建芳, 等. 气溶胶与边界层浅云的相互作用对远海高压型悬空波导数值模拟的影响[J]. 电波科学学报, 2020, 35(6): 878-884.

    LIANG Z C, DING J L, FEI J F, et al. Influence of aerosols and boundary-layer shallow clouds interactions on the simulated elevated ducts associated with high-pressure over the open sea[J]. Chinese journal of radio science. 2020, 35(6): 878-884. (in Chinese)
    [19] 张钜一, 丁佳奇, 赵小峰. 基于GPS探空数据的南海海域大气波导特征分析[J]. 电波科学学报, 2020, 35(6): 841-846.

    ZHANG J Y, DING J Q, ZHAO X F. Statistical analysis of atmospheric ducts in the South China Sea based on GPS sounding [J]. Chinese journal of radio science. 2020, 35(6): 841-846. (in Chinese)
    [20] LIANG Z C, DING J L, FEI J F, et al. Maintenance and sudden change of a strong elevated ducting event associated with high pressure and marine low-level jet[J]. Journal of meteorological research,2020,34(6):1287-1298. DOI: 10.1007/s13351-020-9192-9
    [21] 成印河, 徐剑辉, 张玉生, 等. 南海海域海表面温度对低空大气波导数值模拟的影响研究[J]. 电波科学学报,2022,37(1):40-47. DOI: 10.12265/j.cjors.2021004

    CHENG Y H, XU J H, ZHANG Y S, et al. Influence of sea surface temperature on numerical simulation of lower atmospheric duct over the South China Sea[J]. Journal of meteorological research,2022,37(1):40-47. (in Chinese) DOI: 10.12265/j.cjors.2021004
    [22] 焦林, 张永刚, 张宇. 利用卫星数据反演海洋蒸发波导的研究[J]. 海洋技术,2007,26(4):58-61. DOI: 10.3969/j.issn.1003-2029.2007.04.017

    JIAO L, ZHANG Y G, ZHANG Y. Research on retrieving oceanic evaporation duct with application of satellite data[J]. Ocean technology,2007,26(4):58-61. (in Chinese) DOI: 10.3969/j.issn.1003-2029.2007.04.017
    [23] 成印河. 海上低空大气波导的遥感反演及数值模拟研究[D]. 中国科学院研究生院 (海洋研究所), 2009.

    CHENG Y H. A study on atmospheric ducts over the sea retrieval with AMSR-E satellite data and its numerical simulation [D]. Qingdao: Graduate School of Chinese Academy of Science (Institute of Oceanography), 2009. (in Chinese)
    [24] 伍亦亦, 洪振杰, 郭鹏, 等. 地基 GPS 低高度角观测反演大气折射率廓线的模拟仿真[J]. 地球物理学报,2010,53(5):1085-1090. DOI: 10.3969/j.issn.0001-5733.2010.05.008

    WU Y Y, HONG Z J, GUO P, et al. Simulation of atmospheric refractive profile retrieving from low-elevation ground-based GPS observation[J]. Chinese journal of geophysics,2010,53(5):1085-1090. (in Chinese) DOI: 10.3969/j.issn.0001-5733.2010.05.008
    [25] 廖麒翔, 石汉青, 赵小峰, 等. 基于COSMIC资料的大气波导时空分布特征[J]. 解放军理工大学学报(自然科学版), 2016, 17(2): 60-68.

    LIAO Q X, SHI H Q, ZHAO X F, et al. Spatial and temporal distributions of ducting characteristics derived from COSMIC radio occultation data [J]. Journal of PLA university of science and technology (natural science edition), 2016, 17(2): 60-68. (in Chinese)
    [26] 郝晓静, 李清亮, 郭立新, 等. 基于气象卫星数据的我国沿海悬空波导反演方法初步研究[J]. 电子学报,2019,47(3):600-605.

    HAO X J, LI Q L, GUO L X, et al. A preliminary research on inversion method of elevated duct from meteorological satellite observation over Chinese regional seas[J]. Acta electronica sinica,2019,47(3):600-605. (in Chinese)
    [27] 陈莉, 高山红, 康士峰, 等. 中国近海大气波导的时空特征分析[J]. 电波科学学报, 2009, 24(4): 702-708.

    CHEN L, GAO S H, KANG S F, et al. Statistical analysis on spatial-temporal features of atmospheric ducts over Chinese regional seas [J]. Chinese journal of radio science. 2009, 24(4): 702-708. (in Chinese)
    [28] 杨坤德, 马远良, 史阳. 西太平洋蒸发波导的时空统计规律研究[J]. 物理学报,2009,58(10):7339-7350. DOI: 10.3321/j.issn:1000-3290.2009.10.112

    YANG K D, MA Y L, SHI Y. Spatio-temporal distribution of evaporation duct for the west Pacific Ocean[J]. Acta physica sinica,2009,58(10):7339-7350. (in Chinese) DOI: 10.3321/j.issn:1000-3290.2009.10.112
    [29] 李晓东, 盛立芳, 邱静怡, 等. 西太平洋中南部冬季悬空波导统计分析及成因初探[J]. 海洋气象学报,2017,37(2):51-56.

    LI X D, SHENG L F, QIU J Y, et al. Preliminary investigation on the winter elevated duct over south-central western Pacific Ocean[J]. Journal of marine meteorology,2017,37(2):51-56. (in Chinese)
    [30] 成印河, 杨欣坤, 张玉生, 等. 基于ECMWF数据的中国近海低空波导特征研究[J]. 海洋与湖沼,2021,52(1):86-96. DOI: 10.11693/hyhz20200500139

    CHENG Y H, YANG X K, ZHANG Y S, et al. Duct characteristics over the China seas based on ECMWF reanalysis data[J]. Oceanologia et limnologia sinica,2021,52(1):86-96. (in Chinese) DOI: 10.11693/hyhz20200500139
    [31] 王华, 马贲, 焦林, 等. 基于ECMWF再分析数据的大气波导分布规律研究[J]. 气象学报, 2021, 79(3): 521-530.

    WANG H, MA B, JIAO L, et al. The analysis on distribution characteristics of atmospheric ducts based on ECMWF reanalysis data[J]. Acta meteorologica sinica, 2021, 79(3): 521-530. (in Chinese)
    [32] 胡昊. 湍流参数不确定性对典型海上大气波导过程数值模拟的影响研究[D]. 长沙: 国防科技大学, 2017.

    HU H. Research on the influence of turbulent parameter uncertainty on typical marine atmospheric duct numerical simulation [D]. Changsha: National University of Defense Technology, 2017. (in Chinese)
  • 加载中
图(11)
计量
  • 文章访问数:  149
  • HTML全文浏览量:  42
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-14
  • 录用日期:  2022-02-28
  • 网络出版日期:  2022-02-28

目录

    /

    返回文章
    返回