Modeling and capacity estimation of BLoS channel in evaporation duct
-
摘要: 为衡量海上蒸发波导环境下的超视距通信系统性能,提出了一种超视距信道建模方法及容量估计方案. 基于蒸发波导折射率模型和抛物方程(parabolic equation, PE)模型研究电波沿海面蒸发波导信道传播的大尺度衰落特性,结合统计性模型研究其小尺度衰落特性,形成基于电磁仿真和统计规律的混合蒸发波导信道模型,并由此推导出系统信道容量的估算方案. 对实际海面传播环境进行电磁建模,计算了蒸发波导环境中的路径损耗分布和多天线系统的信道容量,量化了使用多输入多输出(multiple-input multiple-output, MIMO)技术带来的超视距传播性能提升. 仿真结果表明,在蒸发波导环境中采用MIMO技术能够有效地提升信道容量,实现较好的超视距传播效果. 本文结果对海上超视距通信系统的应用及性能评估具有重要意义.Abstract: In order to measure the beyond-line-of-sight (BLoS) communication and radar detection performance of a multiple-input multiple-output (MIMO) system in maritime environment with an evaporation duct, a scheme for estimating the capacity of BLoS channel based on the parabolic equation (PE) theory is presented. Based on the two-dimensional scalar wave equation, a two-dimensional PE theory is derived, and the Feit-Fleck PE is solved by combining the split-step Fourier transform (SSFT) algorithm to predict the fading characteristics of the wave propagation in the evaporation duct channel. The corresponding MIMO channel model is established with related statistical laws, then the calculation scheme of channel capacity is deduced. Firstly, the propagation loss distribution in the evaporation duct is simulated, and the path loss in the duct layer and the signal blind area at the same distance is calculated and compared with it in a free space. The feasibility and advantages of BLoS propagation in evaporation duct are verified. In addition, the channel capacity of the system corresponding to different antenna numbers is simulated to quantify the performance improvement of BLoS propagation brought by using MIMO. The results show that the MIMO system in an evaporative duct can effectively improve the channel capacity and achieve better BLoS propagation effect. The results of this paper are of great significance for the application and performance evaluation of MIMO technology in the field of BLoS maritime communication.
-
Key words:
- evaporation duct /
- BLoS propagation /
- MIMO /
- parabolic equation (PE) /
- channel capacity
-
表 1 系统参数设置
Tab. 1 System parameter setting
$ {P_{\rm{t}}} $ $ {G_{\rm{t}}} $ ${G_{\rm{r}}}$ ${L_{ {\rm{s} } } }$ $ {F_{\rm{n}}} $ $B $ $ {N_0} $ 30 dBm 8 dB 8 dB 1 dB 10 dB 100 MHz −174 dBm -
[1] LENTINI N E, HACKETT E E. Global sensitivity of parabolic equation radar wave propagation simulation to sea state and atmospheric refractivity structure[J]. Radio science,2015,50(10):1027-1049. DOI: 10.1002/2015RS005742 [2] ZHAO X L. Statistical analysis of an over-the-sea experimental transhorizon communication at X-band in China[J]. Journal of electromagnetic waves and applications,2008,22(10):1430-1439. DOI: 10.1163/156939308786348884 [3] BAUMGARTNER G B, HITNEY H V, PAPPERT R A. Duct propagation modelling for the integrated-refractive-effects prediction system[J]. IEE proceedings F: communications radar & signal processing,1983,130(7):630-642. [4] 康士峰, 郭相明. 电波环境及微波超视距传播[J]. 微波学报,2020,36(1):118-123.KANG S F, GUO X M. Radiowave environment and microwave transhorizon propagation[J]. Journal of microwaves,2020,36(1):118-123. (in Chinese) [5] 王红光, 张利军, 郭相明, 等. 蒸发波导微波超视距信道衰落特性研究[J]. 微波学报,2013,29(3):1-5.WANG H G, ZHANG L J, GUO X M, et al. Study of fading characteristics of evaporation duct channel for microwave over the horizon propagation[J]. Journal of microwaves,2013,29(3):1-5. (in Chinese) [6] 张利军, 韩慧, 张蕊, 等. 海上超视距传输信号衰落分布分析[J]. 电波科学学报,2013,28(3):535-539+546. DOI: http://www.cjors.cn/article/id/830ZHANG L J, HAN H, ZHANG R, et al. Fading distribution analysis of trans-horizon signal propagation over the sea-path[J]. Chinese journal of radio science,2013,28(3):535-539+546. (in Chinese) DOI: http://www.cjors.cn/article/id/830 [7] 郭相明, 林乐科, 赵栋梁, 等. 蒸发波导模型与微波超视距传播试验对比[J]. 电波科学学报,2021,36(1):150-155+162. DOI: http://www.cjors.cn/cn/article/doi/10.13443/j.cjors.2019102503GUO X M, LIN L K, ZHAO D L, et al. Fading distribution analysis of trans-horizon signal propagation over the sea-path[J]. Chinese journal of radio science,2021,36(1):150-155+162. (in Chinese) DOI: http://www.cjors.cn/cn/article/doi/10.13443/j.cjors.2019102503 [8] ANDERSON K D. Radar measurements at 16.5 GHz in the oceanic evaporation duct[J]. IEEE transactions on antennas and propagation,1989,37(1):100-106. DOI: 10.1109/8.192171 [9] MIKHALVE S I. Influence of tropospheric duct para- meters changes on microwave path loss[J]. Microwave review,2003,19(2):43-46. [10] REZ A. Ray tracing and parabolic equation methods in the modeling of a tropospheric microwave link[J]. Antennas and propagation,2005,53(11):3785-3791. DOI: 10.1109/TAP.2005.856355 [11] WOODS G S, ADAM R, CAMERON H H, et al. High-capacity, long-range, over ocean microwave link using the evaporation duct[J]. IEEE journal of oceanic engineering,2009,34(3):323-330. DOI: 10.1109/JOE.2009.2020851 [12] 刘成国. 蒸发波导环境特性和传播特性及其应用研究[D]. 西安: 西安电子科技大学, 2003.LIU C G. Research on evaporation duct propagation and its applications[D]. Xi ’an: Xidian University, 2003. (in Chinese) [13] 赵小龙. 电磁波在大气波导环境中的传播特性及其应用研究[D]. 西安: 西安电子科技大学, 2008.ZHAO X L. Research on propagation characteristic of electromagnetic wave and its application in atmospheric duct[D]. Xi’an: Xidian University, 2008. (in Chinese) [14] 周朋. 蒸发波导环境下海上超视距通信应用研究[J]. 舰船科学技术,2017,39(5):135-139. DOI: 10.3404/j.issn.1672-7619.2017.05.027ZHOU P. Research on maritime transhorizon communi-cation application based on evaporation duct[J]. Ship science and technology,2017,39(5):135-139. (in Chinese) DOI: 10.3404/j.issn.1672-7619.2017.05.027 [15] COLUSSI L C, SCHIPHORST R, TEINSMA H, et al. Multiyear trans-horizon radio propagation measurements at 3.5 GHz: system design and measurement results over land and wetland paths in the Netherlands[J]. IEEE transactions on antennas & propagation,2018,66(2):884-896. [16] WANG C X. 6G wireless channel measurements and models: trends and challenges[J]. IEEE vehicular technology magazine,2020,15(4):22-32. DOI: 10.1109/MVT.2020.3018436 [17] WEI T. Hybrid satellite-terrestrial communication net-works for the maritime internet of things: key technologies, opportunities, and challenges[J]. IEEE Internet of things journal,2021,8(11):8910-8934. DOI: 10.1109/JIOT.2021.3056091 [18] HABIB A, MOH S. Wireless channel models for over-the-sea communication: a comparative study[J]. Applied sciences,2019,9(3):443. DOI: 10.3390/app9030443 [19] DINC E, AKAN O B. Beyond-line-of-sight communi- cations with ducting layer[J]. IEEE communications magazine,2014,52(10):37-43. DOI: 10.1109/MCOM.2014.6917399 [20] SANDBERG J. Extraction of multipath parameters from swept measurements on a line-of-sight path[J]. IEEE transactions on antenna and propagation,1980,28(6):743-750. DOI: 10.1109/TAP.1980.1142448 [21] BUNDROCK A, MURPHY J. A broadband 11 GHz radio propagation experiment[J]. IEEE transactions on antennas and propagation,1984,32(5):449-455. DOI: 10.1109/TAP.1984.1143355 [22] LAM W I, WEBSTER A R. Microwave propagation on two line-of-sight oversea paths[J]. IEEE transaction on antennas and propagation,1985,33(5):510-516. DOI: 10.1109/TAP.1985.1143615 [23] INOUE T, AKIYAMA T. Propagation characteristics on line-of-sight over-sea paths in Japan[J]. IEEE transactions on antennas and propagation,1974,22(4):557-565. DOI: 10.1109/TAP.1974.1140835 [24] HITNEY H V. Tropospheric radio propagation assessment[J]. Proceedings of the IEEE,1985,73(2):265-283. DOI: 10.1109/PROC.1985.13138 [25] HITNEY H, VIETH R. Statistical assessment of evaporation duct propagation[J]. IEEE transactions on antennas & propagation,2002,38(6):794-799. [26] HITNEY H V, HITNEY L R. Frequency diversity effects of evaporation duct propagation[J]. IEEE transactions on antennas & propagation,1990,38(10):1694-1700. [27] 陈绍贺, 郑辉, 黄兴忠. 大气波导中多径衰落信道参数的定量计算[J]. 电波科学学报,2010,25(4):638-645.CHEN S H, ZHENG H, HUANG X Z. Numerical computation of parameters of multipath fading channel in the atmospheric duct[J]. Chinese journal of radio science,2010,25(4):638-645. (in Chinese) [28] 缪刚. 海上宽带超视距蒸发波导微波通信系统的建模与分析[J]. 硅谷,2012,5(16):188-189.MIAO G. Modeling and analysis of marine broadband BloS evaporative duct microwave communication system[J]. Silicon Valley,2012,5(16):188-189. (in Chinese) [29] GUNASHEKAR S D, WARRINGTON E M, SIDDLE D R. Long-term statistics related to evaporation duct propagation of 2 GHz radio waves in the English Channel[J]. Radio science,2016,45(6):1-14. [30] COOK J. A sensitivity study of weather data inaccuracies on evaporation duct height algorithms[J]. Radio science,1991,26(3):731-746. DOI: 10.1029/91RS00835 [31] ROGERS L T. Likelihood estimation of tropospheric duct parameters from horizontal propagation measurements[J]. Radio science,2016,32(1):79-92. [32] NEWTON D A. COAMPS Modeled surface layer refractivity in the roughness and evaporation duct experiment 2001[D]. Monterey: Naval Postgraduate School, 2003. [33] ITU. The radio refractive index: its formula and refractivity data[R], 2012. [34] ZHAO W, LI J, ZHAO J, et al. Research on evaporation duct height prediction based on back propagation neural network[J]. IET microwaves, antennas & propagation,2020,29(1):81-93. [35] GAO Y, SHAO Q, YAN B, et al. Parabolic equation modeling of electromagnetic wave propagation over rough sea surfaces[J]. Sensors,2019,19(5):1252. DOI: 10.3390/s19051252 [36] J FORSSÉN. Calculation of sound reduction by a screen in a turbulent atmosphere using the parabolic equation method[J]. Acta acustica united with acustica,1998,84(4):599-606. [37] BROOKNER E, CORNELY P R, LOK Y F. AREPS and TEMPER: getting familiar with these powerful propagation software tools[C]// Radar Conference, IEEE, 2007. [38] OZGUN O, SAHIN V, ERGUDEN M E. PETOOL v2.0: parabolic equation toolbox with evaporation duct models and real environment data[J]. Computer physics communications,2020,256:107454. DOI: 10.1016/j.cpc.2020.107454 [39] 胡绘斌. 预测复杂环境下电波传播特性的算法研究[D]. 长沙: 国防科学技术大学, 2006.HU H B. Study on algorithms of predicting the radio propagation characteristics in complex environments[D]. Changsha: National University of Defence Technology, 2006. (in Chinese) [40] 张海勇, 周朋, 徐池, 等. 蒸发波导条件下海上超视距通信距离研究[J]. 电讯技术,2015,55(1):39-44. DOI: 10.3969/j.issn.1001-893x.2015.01.007ZHANG H Y, ZHOU P, XU C, et al. Research on maritime transhorizon communication distance based on evapo-ration duct[J]. Telecommunication engineering,2015,55(1):39-44. (in Chinese) DOI: 10.3969/j.issn.1001-893x.2015.01.007 [41] DINC E, AKAN O B. Channel model for the surface ducts: large-scale path-loss, delay spread, and AOA[J]. IEEE transactions on antennas & propagation,2015,63(6):2728-2738. [42] ZHANG D, LIAO C, FENG J. Pulse-compression signal propagation and parameter estimation in the troposphere with parabolic equation[J]. IEEE access,2019,7:99917-99927. DOI: 10.1109/ACCESS.2019.2929003 [43] 孙亿平, 张捷, 彭茜, 等. 海面蒸发波导信道的建模及仿真研究[J]. 计算机仿真,2012,29(12):127-130+412. DOI: 10.3969/j.issn.1006-9348.2012.12.031SUN Y P, ZHANG J, PENG Q, et al. Research on channel modeling and simulation for oceanic evaporation duct[J]. Computer simulation,2012,29(12):127-130+412. (in Chinese) DOI: 10.3969/j.issn.1006-9348.2012.12.031 [44] 史阳. 蒸发波导建模及微波传输特性研究[D]. 西安: 西北工业大学, 2017.SHI Y. The modeling of evaporation duct and investigation of microwave propagation characteristics[D]. Xi’an: Northwestern Polytechnical University, 2017. (in Chinese) [45] LEVY M. Parabolic equation methods for electromag- netic wave propagation[M]. London: IEE Press, 2000. [46] GUILLET N, FABBRO V, BOURLIER C, et al. Low grazing angle propagation above rough surface by the parabolic wave equation[C]// Geoscience and Remote Sensing Symposium, 2003. [47] MOLISCH A F. Wireless communications[M]. John Wiley & Sons, 2012. [48] THEODORE S R. 无线通信原理与应用[M]. 蔡涛, 李旭, 杜振民, 译. 北京: 电子工业出版社, 1999. [49] 赵楼, 杨坤德, 杨益新. 海洋蒸发波导信道的多径时延[J]. 探测与控制学报,2010,32(1):39-44. DOI: 10.3969/j.issn.1008-1194.2010.01.009ZHAO L, YANG K D, YANG Y X. Muti-path effect of evaporation duct[J]. Journal of detection& control,2010,32(1):39-44. (in Chinese) DOI: 10.3969/j.issn.1008-1194.2010.01.009 [50] WANG J, ZHOU H, YE L, et al. Wireless channel models for maritime communications[J]. IEEE access,2018,6:68070-68088. DOI: 10.1109/ACCESS.2018.2879902 [51] 郭相明, 刘永胜, 赵栋梁, 等. C波段蒸发波导传播衰落特征的试验研究[J]. 电波科学学报,2019,34(5):622-627. DOI: 10.13443/j.cjors.2018081901GUO X M, LIU Y S, ZHAO D L, et al. Experimental study on fading characteristics in the evaporation duct propagation at C band[J]. Chinese journal of radio science,2019,34(5):622-627. (in Chinese) DOI: 10.13443/j.cjors.2018081901 [52] DINC E, ALAGOZ F, AKAN O B. Path-loss and correlation analysis for space and polarization diversity in surface ducts[J]. IEEE transactions on antennas & propagation,2016,64(10):4498-4503. [53] YONG S C. MIMO-OFDM wireless communications with MATLAB [M]. Wiley Publishing, 2010. [54] ZAIDI K S, JEOTI V, DRIEBERG M, et al. Fading characteristics in evaporation duct: fade margin for a wireless link in the South China Sea[J]. IEEE access,2018,6:11038-11045. DOI: 10.1109/ACCESS.2018.2810299 -