• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微信公众号

蒸发波导超视距信道建模及容量估计

冯菊 曹熙 廖成

冯菊,曹熙,廖成. 蒸发波导超视距信道建模及容量估计[J]. 电波科学学报,2022,37(2):229-237 + 261. DOI: 10.12265/j.cjors.2021214
引用本文: 冯菊,曹熙,廖成. 蒸发波导超视距信道建模及容量估计[J]. 电波科学学报,2022,37(2):229-237 + 261. DOI: 10.12265/j.cjors.2021214
FENG J, CAO X, LIAO C. Modeling and capacity estimation of BLoS channel in evaporation duct[J]. Chinese journal of radio science,2022,37(2):229-237 + 261. (in Chinese). DOI: 10.12265/j.cjors.2021214
Citation: FENG J, CAO X, LIAO C. Modeling and capacity estimation of BLoS channel in evaporation duct[J]. Chinese journal of radio science,2022,37(2):229-237 + 261. (in Chinese). DOI: 10.12265/j.cjors.2021214

蒸发波导超视距信道建模及容量估计

doi: 10.12265/j.cjors.2021214
基金项目: 国家自然科学基金(61801405,61771407);电波环境特性及模化技术重点实验室专项资金(6142403190101)
详细信息
    作者简介:

    冯菊:(1979—),女,四川人,西南交通大学副教授,研究方向为电波传播、计算电磁学

    曹熙:(1996—),男,安徽人,西南交通大学硕士研究生,研究方向为电波传播数值计算

    廖成:(1964—),男,重庆人,西南交通大学教授,研究方向为计算电磁学、电磁散射与逆散射、天线理论及应用研究

    通讯作者:

    廖成 E-mail:c.liao@swjtu.edu.cn

  • 中图分类号: TN011

Modeling and capacity estimation of BLoS channel in evaporation duct

  • 摘要: 为衡量海上蒸发波导环境下的超视距通信系统性能,提出了一种超视距信道建模方法及容量估计方案. 基于蒸发波导折射率模型和抛物方程(parabolic equation, PE)模型研究电波沿海面蒸发波导信道传播的大尺度衰落特性,结合统计性模型研究其小尺度衰落特性,形成基于电磁仿真和统计规律的混合蒸发波导信道模型,并由此推导出系统信道容量的估算方案. 对实际海面传播环境进行电磁建模,计算了蒸发波导环境中的路径损耗分布和多天线系统的信道容量,量化了使用多输入多输出(multiple-input multiple-output, MIMO)技术带来的超视距传播性能提升. 仿真结果表明,在蒸发波导环境中采用MIMO技术能够有效地提升信道容量,实现较好的超视距传播效果. 本文结果对海上超视距通信系统的应用及性能评估具有重要意义.
  • 图  1  蒸发波导的修正折射率剖面

    Fig.  1  The modified refractivity profiles of evaporation duct

    图  2  多天线系统示意图

    Fig.  2  Schematic diagram of a multi-antenna system

    图  3  蒸发波导环境中的路径损耗分布

    Fig.  3  The pathloss distribution with evaporation duct

    图  4  蒸发波导和自由空间环境中的路径损耗对比

    Fig.  4  Comparison of electromagnetic wave path loss between evaporation duct and free space

    图  5  蒸发波导信道容量的CDF

    Fig.  5  The CDF of evaporation duct channel capacity

    图  6  各系统的10%中断信道容量

    Fig.  6  The 10% outage capacity of each system

    图  7  海况等级对蒸发波导信道容量的影响

    Fig.  7  The influence of sea state level on the channel capacity of evaporation duct

    图  8  蒸发波导高度对信道容量的影响

    Fig.  8  The influence of evaporation duct height on channel capacity

    表  1  系统参数设置

    Tab.  1  System parameter setting

    $ {P_{\rm{t}}} $$ {G_{\rm{t}}} $${G_{\rm{r}}}$${L_{ {\rm{s} } } }$$ {F_{\rm{n}}} $$B $$ {N_0} $
    30 dBm8 dB8 dB1 dB10 dB100 MHz−174 dBm
    下载: 导出CSV
  • [1] LENTINI N E, HACKETT E E. Global sensitivity of parabolic equation radar wave propagation simulation to sea state and atmospheric refractivity structure[J]. Radio science,2015,50(10):1027-1049. DOI: 10.1002/2015RS005742
    [2] ZHAO X L. Statistical analysis of an over-the-sea experimental transhorizon communication at X-band in China[J]. Journal of electromagnetic waves and applications,2008,22(10):1430-1439. DOI: 10.1163/156939308786348884
    [3] BAUMGARTNER G B, HITNEY H V, PAPPERT R A. Duct propagation modelling for the integrated-refractive-effects prediction system[J]. IEE proceedings F: communications radar & signal processing,1983,130(7):630-642.
    [4] 康士峰, 郭相明. 电波环境及微波超视距传播[J]. 微波学报,2020,36(1):118-123.

    KANG S F, GUO X M. Radiowave environment and microwave transhorizon propagation[J]. Journal of microwaves,2020,36(1):118-123. (in Chinese)
    [5] 王红光, 张利军, 郭相明, 等. 蒸发波导微波超视距信道衰落特性研究[J]. 微波学报,2013,29(3):1-5.

    WANG H G, ZHANG L J, GUO X M, et al. Study of fading characteristics of evaporation duct channel for microwave over the horizon propagation[J]. Journal of microwaves,2013,29(3):1-5. (in Chinese)
    [6] 张利军, 韩慧, 张蕊, 等. 海上超视距传输信号衰落分布分析[J]. 电波科学学报,2013,28(3):535-539+546. DOI: http://www.cjors.cn/article/id/830

    ZHANG L J, HAN H, ZHANG R, et al. Fading distribution analysis of trans-horizon signal propagation over the sea-path[J]. Chinese journal of radio science,2013,28(3):535-539+546. (in Chinese) DOI: http://www.cjors.cn/article/id/830
    [7] 郭相明, 林乐科, 赵栋梁, 等. 蒸发波导模型与微波超视距传播试验对比[J]. 电波科学学报,2021,36(1):150-155+162. DOI: http://www.cjors.cn/cn/article/doi/10.13443/j.cjors.2019102503

    GUO X M, LIN L K, ZHAO D L, et al. Fading distribution analysis of trans-horizon signal propagation over the sea-path[J]. Chinese journal of radio science,2021,36(1):150-155+162. (in Chinese) DOI: http://www.cjors.cn/cn/article/doi/10.13443/j.cjors.2019102503
    [8] ANDERSON K D. Radar measurements at 16.5 GHz in the oceanic evaporation duct[J]. IEEE transactions on antennas and propagation,1989,37(1):100-106. DOI: 10.1109/8.192171
    [9] MIKHALVE S I. Influence of tropospheric duct para- meters changes on microwave path loss[J]. Microwave review,2003,19(2):43-46.
    [10] REZ A. Ray tracing and parabolic equation methods in the modeling of a tropospheric microwave link[J]. Antennas and propagation,2005,53(11):3785-3791. DOI: 10.1109/TAP.2005.856355
    [11] WOODS G S, ADAM R, CAMERON H H, et al. High-capacity, long-range, over ocean microwave link using the evaporation duct[J]. IEEE journal of oceanic engineering,2009,34(3):323-330. DOI: 10.1109/JOE.2009.2020851
    [12] 刘成国. 蒸发波导环境特性和传播特性及其应用研究[D]. 西安: 西安电子科技大学, 2003.

    LIU C G. Research on evaporation duct propagation and its applications[D]. Xi ’an: Xidian University, 2003. (in Chinese)
    [13] 赵小龙. 电磁波在大气波导环境中的传播特性及其应用研究[D]. 西安: 西安电子科技大学, 2008.

    ZHAO X L. Research on propagation characteristic of electromagnetic wave and its application in atmospheric duct[D]. Xi’an: Xidian University, 2008. (in Chinese)
    [14] 周朋. 蒸发波导环境下海上超视距通信应用研究[J]. 舰船科学技术,2017,39(5):135-139. DOI: 10.3404/j.issn.1672-7619.2017.05.027

    ZHOU P. Research on maritime transhorizon communi-cation application based on evaporation duct[J]. Ship science and technology,2017,39(5):135-139. (in Chinese) DOI: 10.3404/j.issn.1672-7619.2017.05.027
    [15] COLUSSI L C, SCHIPHORST R, TEINSMA H, et al. Multiyear trans-horizon radio propagation measurements at 3.5 GHz: system design and measurement results over land and wetland paths in the Netherlands[J]. IEEE transactions on antennas & propagation,2018,66(2):884-896.
    [16] WANG C X. 6G wireless channel measurements and models: trends and challenges[J]. IEEE vehicular technology magazine,2020,15(4):22-32. DOI: 10.1109/MVT.2020.3018436
    [17] WEI T. Hybrid satellite-terrestrial communication net-works for the maritime internet of things: key technologies, opportunities, and challenges[J]. IEEE Internet of things journal,2021,8(11):8910-8934. DOI: 10.1109/JIOT.2021.3056091
    [18] HABIB A, MOH S. Wireless channel models for over-the-sea communication: a comparative study[J]. Applied sciences,2019,9(3):443. DOI: 10.3390/app9030443
    [19] DINC E, AKAN O B. Beyond-line-of-sight communi- cations with ducting layer[J]. IEEE communications magazine,2014,52(10):37-43. DOI: 10.1109/MCOM.2014.6917399
    [20] SANDBERG J. Extraction of multipath parameters from swept measurements on a line-of-sight path[J]. IEEE transactions on antenna and propagation,1980,28(6):743-750. DOI: 10.1109/TAP.1980.1142448
    [21] BUNDROCK A, MURPHY J. A broadband 11 GHz radio propagation experiment[J]. IEEE transactions on antennas and propagation,1984,32(5):449-455. DOI: 10.1109/TAP.1984.1143355
    [22] LAM W I, WEBSTER A R. Microwave propagation on two line-of-sight oversea paths[J]. IEEE transaction on antennas and propagation,1985,33(5):510-516. DOI: 10.1109/TAP.1985.1143615
    [23] INOUE T, AKIYAMA T. Propagation characteristics on line-of-sight over-sea paths in Japan[J]. IEEE transactions on antennas and propagation,1974,22(4):557-565. DOI: 10.1109/TAP.1974.1140835
    [24] HITNEY H V. Tropospheric radio propagation assessment[J]. Proceedings of the IEEE,1985,73(2):265-283. DOI: 10.1109/PROC.1985.13138
    [25] HITNEY H, VIETH R. Statistical assessment of evaporation duct propagation[J]. IEEE transactions on antennas & propagation,2002,38(6):794-799.
    [26] HITNEY H V, HITNEY L R. Frequency diversity effects of evaporation duct propagation[J]. IEEE transactions on antennas & propagation,1990,38(10):1694-1700.
    [27] 陈绍贺, 郑辉, 黄兴忠. 大气波导中多径衰落信道参数的定量计算[J]. 电波科学学报,2010,25(4):638-645.

    CHEN S H, ZHENG H, HUANG X Z. Numerical computation of parameters of multipath fading channel in the atmospheric duct[J]. Chinese journal of radio science,2010,25(4):638-645. (in Chinese)
    [28] 缪刚. 海上宽带超视距蒸发波导微波通信系统的建模与分析[J]. 硅谷,2012,5(16):188-189.

    MIAO G. Modeling and analysis of marine broadband BloS evaporative duct microwave communication system[J]. Silicon Valley,2012,5(16):188-189. (in Chinese)
    [29] GUNASHEKAR S D, WARRINGTON E M, SIDDLE D R. Long-term statistics related to evaporation duct propagation of 2 GHz radio waves in the English Channel[J]. Radio science,2016,45(6):1-14.
    [30] COOK J. A sensitivity study of weather data inaccuracies on evaporation duct height algorithms[J]. Radio science,1991,26(3):731-746. DOI: 10.1029/91RS00835
    [31] ROGERS L T. Likelihood estimation of tropospheric duct parameters from horizontal propagation measurements[J]. Radio science,2016,32(1):79-92.
    [32] NEWTON D A. COAMPS Modeled surface layer refractivity in the roughness and evaporation duct experiment 2001[D]. Monterey: Naval Postgraduate School, 2003.
    [33] ITU. The radio refractive index: its formula and refractivity data[R], 2012.
    [34] ZHAO W, LI J, ZHAO J, et al. Research on evaporation duct height prediction based on back propagation neural network[J]. IET microwaves, antennas & propagation,2020,29(1):81-93.
    [35] GAO Y, SHAO Q, YAN B, et al. Parabolic equation modeling of electromagnetic wave propagation over rough sea surfaces[J]. Sensors,2019,19(5):1252. DOI: 10.3390/s19051252
    [36] J FORSSÉN. Calculation of sound reduction by a screen in a turbulent atmosphere using the parabolic equation method[J]. Acta acustica united with acustica,1998,84(4):599-606.
    [37] BROOKNER E, CORNELY P R, LOK Y F. AREPS and TEMPER: getting familiar with these powerful propagation software tools[C]// Radar Conference, IEEE, 2007.
    [38] OZGUN O, SAHIN V, ERGUDEN M E. PETOOL v2.0: parabolic equation toolbox with evaporation duct models and real environment data[J]. Computer physics communications,2020,256:107454. DOI: 10.1016/j.cpc.2020.107454
    [39] 胡绘斌. 预测复杂环境下电波传播特性的算法研究[D]. 长沙: 国防科学技术大学, 2006.

    HU H B. Study on algorithms of predicting the radio propagation characteristics in complex environments[D]. Changsha: National University of Defence Technology, 2006. (in Chinese)
    [40] 张海勇, 周朋, 徐池, 等. 蒸发波导条件下海上超视距通信距离研究[J]. 电讯技术,2015,55(1):39-44. DOI: 10.3969/j.issn.1001-893x.2015.01.007

    ZHANG H Y, ZHOU P, XU C, et al. Research on maritime transhorizon communication distance based on evapo-ration duct[J]. Telecommunication engineering,2015,55(1):39-44. (in Chinese) DOI: 10.3969/j.issn.1001-893x.2015.01.007
    [41] DINC E, AKAN O B. Channel model for the surface ducts: large-scale path-loss, delay spread, and AOA[J]. IEEE transactions on antennas & propagation,2015,63(6):2728-2738.
    [42] ZHANG D, LIAO C, FENG J. Pulse-compression signal propagation and parameter estimation in the troposphere with parabolic equation[J]. IEEE access,2019,7:99917-99927. DOI: 10.1109/ACCESS.2019.2929003
    [43] 孙亿平, 张捷, 彭茜, 等. 海面蒸发波导信道的建模及仿真研究[J]. 计算机仿真,2012,29(12):127-130+412. DOI: 10.3969/j.issn.1006-9348.2012.12.031

    SUN Y P, ZHANG J, PENG Q, et al. Research on channel modeling and simulation for oceanic evaporation duct[J]. Computer simulation,2012,29(12):127-130+412. (in Chinese) DOI: 10.3969/j.issn.1006-9348.2012.12.031
    [44] 史阳. 蒸发波导建模及微波传输特性研究[D]. 西安: 西北工业大学, 2017.

    SHI Y. The modeling of evaporation duct and investigation of microwave propagation characteristics[D]. Xi’an: Northwestern Polytechnical University, 2017. (in Chinese)
    [45] LEVY M. Parabolic equation methods for electromag- netic wave propagation[M]. London: IEE Press, 2000.
    [46] GUILLET N, FABBRO V, BOURLIER C, et al. Low grazing angle propagation above rough surface by the parabolic wave equation[C]// Geoscience and Remote Sensing Symposium, 2003.
    [47] MOLISCH A F. Wireless communications[M]. John Wiley & Sons, 2012.
    [48] THEODORE S R. 无线通信原理与应用[M]. 蔡涛, 李旭, 杜振民, 译. 北京: 电子工业出版社, 1999.
    [49] 赵楼, 杨坤德, 杨益新. 海洋蒸发波导信道的多径时延[J]. 探测与控制学报,2010,32(1):39-44. DOI: 10.3969/j.issn.1008-1194.2010.01.009

    ZHAO L, YANG K D, YANG Y X. Muti-path effect of evaporation duct[J]. Journal of detection& control,2010,32(1):39-44. (in Chinese) DOI: 10.3969/j.issn.1008-1194.2010.01.009
    [50] WANG J, ZHOU H, YE L, et al. Wireless channel models for maritime communications[J]. IEEE access,2018,6:68070-68088. DOI: 10.1109/ACCESS.2018.2879902
    [51] 郭相明, 刘永胜, 赵栋梁, 等. C波段蒸发波导传播衰落特征的试验研究[J]. 电波科学学报,2019,34(5):622-627. DOI: 10.13443/j.cjors.2018081901

    GUO X M, LIU Y S, ZHAO D L, et al. Experimental study on fading characteristics in the evaporation duct propagation at C band[J]. Chinese journal of radio science,2019,34(5):622-627. (in Chinese) DOI: 10.13443/j.cjors.2018081901
    [52] DINC E, ALAGOZ F, AKAN O B. Path-loss and correlation analysis for space and polarization diversity in surface ducts[J]. IEEE transactions on antennas & propagation,2016,64(10):4498-4503.
    [53] YONG S C. MIMO-OFDM wireless communications with MATLAB [M]. Wiley Publishing, 2010.
    [54] ZAIDI K S, JEOTI V, DRIEBERG M, et al. Fading characteristics in evaporation duct: fade margin for a wireless link in the South China Sea[J]. IEEE access,2018,6:11038-11045. DOI: 10.1109/ACCESS.2018.2810299
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  289
  • HTML全文浏览量:  59
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-12
  • 录用日期:  2021-11-09
  • 网络出版日期:  2021-11-09

目录

    /

    返回文章
    返回