• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微信公众号

一种联合地基GNSS和测高仪数据的电离层层析成像新算法

欧明 吴家燕 陈龙江 甄卫民 吕梦海

欧明,吴家燕,陈龙江,等. 一种联合地基GNSS和测高仪数据的电离层层析成像新算法[J]. 电波科学学报,xxxx,x(x): x-xx. DOI: 10.12265/j.cjors.2021213
引用本文: 欧明,吴家燕,陈龙江,等. 一种联合地基GNSS和测高仪数据的电离层层析成像新算法[J]. 电波科学学报,xxxx,x(x): x-xx. DOI: 10.12265/j.cjors.2021213
OU M, WU J Y, CHEN L J, et al. A new hybrid ionospheric tomography algorithm by combining ground-based GNSS and ionosonde data[J]. Chinese journal of radio science,xxxx,x(x): x-xx. (in Chinese). DOI: 10.12265/j.cjors.2021213
Citation: OU M, WU J Y, CHEN L J, et al. A new hybrid ionospheric tomography algorithm by combining ground-based GNSS and ionosonde data[J]. Chinese journal of radio science,xxxx,x(x): x-xx. (in Chinese). DOI: 10.12265/j.cjors.2021213

一种联合地基GNSS和测高仪数据的电离层层析成像新算法

doi: 10.12265/j.cjors.2021213
基金项目: 国家重点研发计划(2018YFF01013700, 2018YFF01013703);技术基础预研项目(315030409);中国电波传播研究所稳定支持科研经费资助(A131902W03)
详细信息
    作者简介:

    欧明:(1984—),男,江西人,中国电波传播研究所高级工程师,主要研究方向为电离层探测、层析成像及同化建模技术

    吴家燕:(1995—),女,江苏人,中国电波传播研究所助理工程师,主要研究方向为GNSS电离层探测与电离层CT技术

    陈龙江:(1995—),男,江西人,中国电波传播研究所助理工程师,主要研究方向为电离层重构与建模方法

    甄卫民:(1963—),男,河北人,中国电波传播研究所研究员,博士生导师. 现任中国GPS协会理事,中国空间学会空间物理专业委员会委员,《全球定位系统》杂志编委等. 主要从事空间环境、电磁环境和导航领域的研究

    通讯作者:

    欧明 E-mail: ohm1122@163.com

  • 中图分类号: P352.7

A new hybrid ionospheric tomography algorithm by combining ground-based GNSS and ionosonde data

  • 摘要: 电离层层析成像(computerized tomography, CT)技术是获取区域大范围电离层三维结构非常重要的手段之一. 针对单独使用地基GNSS进行电离层三维层析成像的不足,提出了一种联合地基GNSS和测高仪数据的电离层三维层析成像方法,综合了测高仪探测电离层垂直分辨率较高和地基GNSS电离层CT水平分辨率较高的优点,以测高仪数据驱动更新IRI模型,将更新后的IRI模型作为背景电离层模型,再利用改进的ART算法结合地基GNSS TEC进行CT;基于IGS、中国陆态网地基GNSS台站及GIRO测高仪数据实现了中国及周边区域电离层三维CT. 分别采用Madrigal TEC数据和中国区域独立的测高仪数据对CT结果获取的TEC和电子密度进行评估. TEC精度评估结果表明,CT算法的TEC平均误差和标准差相比,IRI模型及CODE GIM数据均有明显降低;而电子密度评估结果表明,单纯依赖地基GNSS进行电离层CT可以提升foF2的精度但无法有效提升hmF2的精度;联合测高仪数据后,电离层foF2hmF2的重构精度均有明显提升,其中hmF2的平均误差和标准差从20.6 km和16.5 km下降为14.8 km和11.7 km,说明测高仪数据对电离层CT垂直分辨率的提升作用明显.
  • 图  1  电离层CT使用的地基GNSS台站(红色方框)和精度评估用的测高仪台站(蓝色三角)分布图

    Fig.  1  Distributions of ground-based GNSS stations for ionospheric CT and ionosonde stations for accuracy validation

    图  2  2017-09-06中国及周边区域Madrigal垂直TEC分布

    Fig.  2  Distribution of Madrigal vertical TEC over China and surrounding areas on September 6, 2017

    图  3  2017-09-06中国及周边区域CODE全球电离层TEC分布

    Fig.  3  Ionospheric TEC distribution of CODE-GIM over China and its surrounding regions on September 6, 2017

    图  4  2017-09-06中国及周边区域IRI模型计算给出的TEC分布

    Fig.  4  Ionospheric TEC distribution of IRI model over China and its surrounding regions on September 6, 2017

    图  5  2017-09-06中国及周边区域电离层TEC地图电离层CT重构结果

    Fig.  5  Ionospheric TEC map of CIT reconstruction results over China and surrounding areas on September 6, 2017

    图  6  电离层TEC地图精度评估结果

    Fig.  6  Accuracy evaluation results of different ionospheric TEC map

    图  7  2017-09-06中国及周边区域上空电离层CT的三维电子密度分布

    Fig.  7  3D electron density distribution of ionospheric CT over China and its surrounding areas on September 6, 2017

    图  8  2017-09-06东经100°上空IED随时间-纬度-高度的变化

    Fig.  8  The variation of ionospheric electron density over 100° E on September 6, 2017 with universal time

    图  9  电离层CT前后电离层foF2误差比较

    Fig.  9  Comparison of ionospheric fo F2 deviation before and after ionospheric CT

    图  10  电离层CT前后电离层hmF2误差比较

    Fig.  10  Comparison of ionospheric hm F2 deviation before and after ionospheric CT

  • [1] MCNAMARA L F. The ionosphere: communications, surveillance, and direction finding[J]. Krieger Pub Co, 1991.
    [2] 袁运斌, 霍星亮, 张宝成. 近年来我国GNSS电离层延迟精确建模及修正研究进展[J]. 测绘学报,2017,46(10):1364-1378. DOI: 10.11947/j.AGCS.2017.20170349

    YUAN Y B, HUO X L, ZHANG B C. Research progress of precise models and correction for GNSS ionospheric delay in China over recent years[J]. Acta geodaetica et cartographica sinica,2017,46(10):1364-1378. (in Chinese) DOI: 10.11947/j.AGCS.2017.20170349
    [3] DAVIES K. Ionospheric radio[M]. London: Peter Peregrinus, 1990.
    [4] FARZANEH S, FOROOTAN E. Reconstructing regional ionospheric electron density: a combined spherical Slepian function and empirical orthogonal function approach[J]. Surveys in geophysics,2018,39(2):289-309. DOI: 10.1007/s10712-017-9446-y
    [5] BUST G S, MITCHELL C N. History, current state, and future directions of ionospheric imaging[J]. Review of geophysics,2008,46(1):RG1003.
    [6] AUSTEN J R, FRANKE S J, LIU C H. Ionospheric imaging using computerized tomography[J]. Radio science,1998,23(3):299-307.
    [7] CHEN C H, SAITO A, LIN C H, et al. Medium-scale traveling ionospheric disturbances by three-dimensional ionospheric GPS tomography[J]. Earth planets space,2016,68:1-9. DOI: 10.1186/s40623-015-0369-x
    [8] YEH K C, RAYMUND T D. Limitations of ionospheric imaging by tomography[J]. Radio science,1991,26(6):1361-1380. DOI: 10.1029/91RS01873
    [9] NA H, SUTTON E. Resolution analysis of ionospheric tomography systems[J]. International journal of imaging systems & technology,1994,5(2):169-173.
    [10] HAJJ G A, IBANEZ-MEIER R, KURSINSKI E R, et al. Imaging the ionosphere with the global positioning system[J]. International journal of imaging systems & technology,1994,5(2):174-187.
    [11] RIUS A, RUFFINI G, CUCURULL L. Improving the vertical resolution of ionospheric tomography with GPS occultations[J]. Geophysics research letters,1997,14(18):2291-2294.
    [12] DEAR R M, MITCHELL C N. Ionospheric imaging at mid-latitudes using both GPS and ionosondes[J]. Journal of atmospheric and solar terrestrial physics,2007,69(7):817-825. DOI: 10.1016/j.jastp.2006.06.001
    [13] MITCHELL C N, CANNON P S, SPENCER P S. Multi-instrument data analysis system imaging of the ionosphere[R]. Report for the United States Air Force European Office of Aerospace Research and Development, 2002.
    [14] MITCHELL C N, SPENCER P S J. A three-dimensional time-dependent algorithm for ionosphere imaging using GPS[J]. Annals of geophysics,2003,46(4):687-696.
    [15] MA X F, MARUYAMA T, MA G, et al. Three-dimensional ionospheric tomography using observation data of GPS ground receivers and ionosonde by neural network[J]. Journal of geophysical research space physics,2005,110(A5):29-30.
    [16] YAO Y, TANG J, KONG J, et al. Application of hybrid regularization method for tomographic reconstruction of mid-latitude ionospheric electron density[J]. Advances in space research,2013,52(12):2215-2225. DOI: 10.1016/j.asr.2013.09.030
    [17] 肖锐. 两次超级磁暴期间电离层响应的时变3-D电离层层析研究[D]. 武汉: 武汉大学, 2013.

    XIAO R. Study of the ionospheric responses during two super storms by 3-D ionospheric tomography[D]. Wuhan: Wuhan University, 2013. (in Chinese)
    [18] 闻德保. 基于GNSS的电离层层析算法及其应用[M]. 北京: 测绘出版社, 2013.

    WEN D B. GNSS-based ionospheric tomotraphic algorithms and applications[M]. Beijing: Surveying and Mapping Press, 2013. (in Chinese)
    [19] LI H, LI Z, ZHANG B, et al. 3D ionospheric tomography over southeast China using a new scheme of constrained least squares with parameter weight matrix[J]. Journal of atmospheric and solar-terrestrial physics,2020,203:105255. DOI: 10.1016/j.jastp.2020.105255
    [20] SSESSANGA N, YAMAMOTO M, SAITO S, et al. Complementing regional ground GNSS-STEC computerized ionospheric tomography (CIT) with ionosonde data assimilation[J]. GPS solutions,2021,25(3):1-15.
    [21] 欧明, 甄卫民, 於晓, 等. 一种基于截断奇异值分解正则化的电离层层析成像算法[J]. 电波科学学报,2014,29(2):345-352.

    OU M, ZHEN W M, YU X, et al. A computerized ionospheric tomography algorithm based on TSVD regularization[J]. Chinese journal of radio science,2014,29(2):345-352. (in Chinese)
    [22] 闻德保, 吕慧珠, 张啸. 电离层层析重构的一种新算法[J]. 地球物理学报,2014,57(11):3611-3616. DOI: 10.6038/cjg20141114

    WEN D B, LU H Z, ZHANG X. A new method of ionospheric tomographic reconstruction[J]. Chinese journal of geophysics,2014,57(11):3611-3616. (in Chinese) DOI: 10.6038/cjg20141114
    [23] BILITZA D, ALTADILL D, TRUHLIK V, et al. International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions[J]. Space weather-the international journal of research & applications,2017,15(2):418-429.
    [24] GALKIN I A, REINISCH B W, HUANG X, et al. 2012. Assimilation of GIRO data into a real-time IRI[J]. Radio science, 47(4): 1-10.
    [25] 欧明, 熊雯, 刘裔文, 等. 基于地基GNSS和COSMIC掩星数据吸收的三维IED重构[J]. 电波科学学报. 2019, 34(3), 322-329.

    OU M, XIONG W, LIU Y W, et al. Three-dimensional ionospheric electron density reconstruction by data ingestion of ground-based GNSS and COSMIC occultation measurements[J]. Chinese journal of radio science, 2019, 34(3), 322-329. (in Chinese)
    [26] 陈龙江, 甄卫民, 欧明, 等. 一种基于分步线性最优估计的全球中低纬区域电离层foF2重构方法[J]. 电波科学学报,2021,36(1):36-42.

    CHEN L J, ZHEN W M, OU M, et al. A method of ionospheric foF2 reconstruction in low and middle latitudes of the world based on stepwise linear optimal estimation[J]. Chinese journal of radio science,2021,36(1):36-42. (in Chinese)
    [27] DACH R, LUTZ S, WALSER P, FRIDEZ P. User manual of the Bernese GNSS software version 5.2 [EB/OL]. 2015 [2021-08-10]. http://www.bernese.unibe.ch/docs/DOCU52.pdf
    [28] CIRAOLO L, AZPILICUETA F, BRUNINI C, et al. Calibration errors on experimental slant total electron content (TEC) determined with GPS[J]. Journal of geodesy,2007,81(2):111-120. DOI: 10.1007/s00190-006-0093-1
    [29] VIERINEN J, COSTER A J, RIDEOUT W C, et al. Statistical framework for estimating GNSS bias[J]. Atmospheric measurement techniques,2016,9(3):1303-1312. DOI: 10.5194/amt-9-1303-2016
    [30] REINISCH B W, GALKIN I A. Global ionospheric radio observatory (GIRO)[J]. Earth planets & space,2011,63(4):377-381.
  • 加载中
图(10)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  82
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-10
  • 录用日期:  2021-11-24
  • 网络出版日期:  2021-11-24

目录

    /

    返回文章
    返回