• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微信公众号

一种基于离散余弦变换-惩罚最小二乘回归的区域高分辨率电离层TEC地图重构方法

欧明 陈龙江 吴家燕 甄卫民 吕梦海

欧明,陈龙江,吴家燕,等. 一种基于离散余弦变换-惩罚最小二乘回归的区域高分辨率电离层TEC地图重构方法[J]. 电波科学学报,2022,37(3):1-8. DOI: 10.12265/j.cjors.2021211
引用本文: 欧明,陈龙江,吴家燕,等. 一种基于离散余弦变换-惩罚最小二乘回归的区域高分辨率电离层TEC地图重构方法[J]. 电波科学学报,2022,37(3):1-8. DOI: 10.12265/j.cjors.2021211
OU M, CHEN L J, WU J Y, et al. Regional high spatial and temporal resolution ionospheric TEC map reconstruction base on DCT-PLS algorithm[J]. Chinese journal of radio science,2022,37(3):1-8. (in Chinese). DOI: 10.12265/j.cjors.2021211
Citation: OU M, CHEN L J, WU J Y, et al. Regional high spatial and temporal resolution ionospheric TEC map reconstruction base on DCT-PLS algorithm[J]. Chinese journal of radio science,2022,37(3):1-8. (in Chinese). DOI: 10.12265/j.cjors.2021211

一种基于离散余弦变换-惩罚最小二乘回归的区域高分辨率电离层TEC地图重构方法

doi: 10.12265/j.cjors.2021211
基金项目: 国家重点研发计划(2018YFF01013700, 2018YFF01013703);技术基础预研(315030409);中国电波传播研究所稳定支持科研经费(A131902W03)
详细信息
    作者简介:

    欧明:(1984—),男,江西人,中国电波传播研究所高级工程师,主要研究方向为电离层探测、层析成像及同化建模技术

    陈龙江:(1995—),男,江西人,中国电波传播研究所助理工程师,主要研究方向为电离层重构与建模方法

    吴家燕:(1995—),女,江苏人,中国电波传播研究所助理工程师,主要研究方向为GNSS电离层探测与电离层CT技术

    甄卫民:(1963—),男,河北人,中国电波传播研究所研究员,博士生导师,现任中国GPS协会理事、中国空间学会空间物理专业委员会委员、《全球定位系统》杂志编委等. 主要从事空间环境、电磁环境和导航领域的研究

    通讯作者:

    欧明 E-mail: ohm1122@163.com

  • 中图分类号: P352.7

Regional high spatial and temporal resolution ionospheric TEC map reconstruction base on DCT-PLS algorithm

  • 摘要: 高时空分辨率的电离层TEC地图对中小尺度电离层扰动的分析和建模具有重要的应用价值. 利用中国大陆构造环境监测网络和国际GNSS服务(international GNSS service, IGS)的地基GNSS监测数据,基于离散余弦变换-惩罚最小二乘回归(discrete cosine transform and penalized least square regression, DCT-PLS)算法,实现了区域高时空分辨率(1°×1°×15 min)电离层TEC地图的重构. 通过与2014年和2018年部分Madrigal高精度TEC数据的对比结果表明,DCT-PLS算法给出的垂直TEC一致性和稳定性相比欧洲定轨中心欧洲定轨中心(Center for Orbit Determination in Europe,CODE)的全球TEC地图(global ionospheric map, GIM)数据有明显提升,其中TEC平均误差由3.9 TECU下降为2.0 TECU,标准差由3.7 TECU下降为2.7 TECU. 对2017-09一次磁暴期间的电离层重构结果表明,本文算法能够较好地再现磁暴期间电离层精细化的扰动结构特征,相关研究结果可为实现区域高分辨率电离层监测和应用提供技术支撑.
  • 图  1  2014-01-01T04:00UT地基GNSS IPP及对应垂直电离层TEC分布

    Fig.  1  The distribution map of GNSS ionospheric pierce points and corresponding vertical TEC on January 1, 2014 at 04:00 UT

    图  2  2014-01-01T00:00―23:00UT指定区域Madrigal垂直电离层TEC分布

    Fig.  2  Distribution of Madrigal vertical TEC in corresponding region during UT00:00―23:00 on January 1, 2014

    图  3  2014-01-01T00:00―23:00UT指定区域CODE全球电离层TEC分布

    Fig.  3  Ionospheric TEC distribution of CODE-GIM in corresponding region during UT00:00―23:00 on January 1, 2014

    图  4  2014-01-01T00:00―23:00UT指定区域DCFPLS算法重构电离层TEC

    Fig.  4  Ionospheric TEC map reconstruction results in corresponding region during UT00:00―23:00 on January 1, 2014

    图  5  CODE数据和DCT-PLS算法重构的电离层TEC地图与Madrigal数据一致性和稳定性评对比

    Fig.  5  Comparison of consistency and stability between TEC map by GIM and DCT-PLS algorithm and Madrigal data

    图  6  2017-09-08T12:00―17:45UT磁暴期间指定区域高分辨率垂直电离层TEC变化

    Fig.  6  Variation of vertical TEC in corresponding region during UT12:00-17:45 on September 8, 2017

    图  7  2017-09-08T12:00−19:00UT磁暴期间指定区域25°N 垂直电离层TECKeogram变化

    Fig.  7  TEC Keogram variation analysis of 25°N in corresponding region on September 8, 2017

  • [1] MANNUCCI A J, WILSON B D, YUAN D N, et al. A global mapping technique for GPS derived ionospheric total electron content measurements[J]. Radio Science,1998,33:565-582. DOI: 10.1029/97RS02707
    [2] AFRAIMOVICH E L, ASTAFYEVA E I, OINATS A V, et al. Global electron content: a new conception to track solar activity[J]. Annales geophysicae,2008,26(2):763-769.
    [3] JAKOWSKI N, HOQUE M, MAYER C. A new global TEC model for estimating transionospheric radio wave propagation errors[J]. Journal of geodesy,2012,85:965-974.
    [4] COSTER A J, GONCHARENKO L, ZHANG S R, et al. GNSS observations of ionospheric variations during the 21 August 2017 solar eclipse[J]. Geophysical research letters,2017,44:12. DOI: 10.1002/2016GL071741
    [5] HERNÁNDEZ-PAJARES M, JUAN J M, SANZ J, et al. The IGS VTEC maps: a reliable source of ionospheric information since 1998[J]. Journal of Geodesy,2009,83(3-4):263-275. DOI: 10.1007/s00190-008-0266-1
    [6] ROMA-DOLLASE D, HERNÁNDEZ-PAJARES M, KRANKOWSKI A, et al. Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle[J]. Journal of geodesy,2017,92:691-706.
    [7] 欧明, 甄卫民, 徐继生, 等. 利用数据同化技术实现区域电离层TEC重构[J]. 武汉大学学报(信息科学版),2017,42(8):1075-1081.

    OU M, ZHEN W M, XU J S, et. al. Regional ionospheric TEC reconstruction by data assimilation technique[J]. Geomatics and Information Science of Wuhan University,2017,42(8):1075-1081. (in Chinese)
    [8] JI E Y, MOON Y J, PARK E. Improvement of IRI global TEC maps by deep learning based on conditional generative adversarial networks[J]. Space weather,2020,18(5):e2019SW002411.
    [9] PAN Y, JIN M, ZHANG S, et al. TEC map completion using DCGAN and poisson blending[J]. Space Weather,2020,18(5):e2019SW002390.
    [10] HERNÁNDEZ-PAJARES M, ROMA-DOLLASE D, KRANKOWSKI A, et al. Methodology and consistency of slant and vertical assessments for ionospheric electron content models[J]. Journal of geodesy,2017,19:1405-1414.
    [11] LIU J Y, CHUO Y J, SHAN S J, et al. Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements[J]. Annales geophysicae,2004,22(5):1585-1593. DOI: 10.5194/angeo-22-1585-2004
    [12] ZHU F, YUN W, ZHOU Y, et al. Temporal and spatial distribution of GPS-TEC anomalies prior to the strong earthquakes, Astrophys[J]. Space science,2013,345:239-246. DOI: 10.1007/s10509-013-1411-8
    [13] TSURUTANI B, MANNUCCI A, IIJIMA B, et al. The extreme Halloween 2003 solar flares (and Bastille Day, 2000 Flare), ICMEs, and resultant extreme ionospheric effects: a review[J]. Advance space research,2006,37:1583-1588. DOI: 10.1016/j.asr.2005.05.114
    [14] MONTE-MORENO E, HERNÁNDEZ-PAJARES M. Occurrence of solar flares viewed with GPS: statistics and fractal nature[J]. Journal of geophysics research,2014,119:9216-9227. DOI: 10.1002/2014JA020206
    [15] WANG C, ROSEN I G, TSURUTANI B T, et al. Statistical characterization of ionosphere anomalies and their relationship to space weather events[J]. Journal of space weather and space climate,2016,6:A5. DOI: 10.1051/swsc/2015046
    [16] GOSS A, SCHMIDT M, ERDOGAN E, et al. High-resolution vertical total electron content maps based on multi-scale B-spline representations[J]. Annales geophysicae,2019,37(4):699-717. DOI: 10.5194/angeo-37-699-2019
    [17] 毛田, 万卫星, 孙凌峰. 用Kriging方法构建中纬度区域电离层TEC地图[J]. 空间科学学报,2007,27(4):279-285. DOI: 10.3969/j.issn.0254-6124.2007.04.003

    MAO T, WAN W X. SUN L F. Central and northern China TEC map using the Kriging method[J]. Chinese journal of space science,2007,27(4):279-285. (in Chinese) DOI: 10.3969/j.issn.0254-6124.2007.04.003
    [18] AA E, HUANG W, YU S, et al. A regional ionospheric TEC mapping technique over China and adjacent areas on the basis of data assimilation[J]. Journal of geophysical research:space physics,2015,120:5049-5061. DOI: 10.1002/2015JA021140
    [19] 朱永兴, 谭述森, 明锋, 等. 顾及经纬度方向异性的电离层TEC IDW插值及精度分析[J]. 武汉大学学报(信息科学版),2019,44(11):1605-1612.

    ZHU Y X, TAN S S, MIN F, et al. IDW ionospheric TEC interpolation and accuracy analysis considering latitude and longitude anisotropy[J]. Geomatics and Information Science of Wuhan University,2019,44(11):1605-1612. (in Chinese)
    [20] FOSTER M, EVANS A. An evaluation of interpolation techniques for reconstructing ionospheric TEC maps[J]. IEEE transactions on geoscience and remote sensing,2008,46(7):2153-2164. DOI: 10.1109/TGRS.2008.916642
    [21] VIERINEN J, COSTER A J, RIDEOUT W C, et al. Statistical framework for estimating GNSS bias[J]. Atmospheric measurement techniques,2016,9:1303-1312. DOI: 10.5194/amt-9-1303-2016
    [22] GARCIA D. Robust smoothing of gridded data in one and higher dimensions with missing values[J]. Computational statistics & data analysis,2010,54(4):1167-1178.
    [23] WANG G, GARCIA D, LIU Y, et al. A three-dimensional gap filling method for large geophysical datasets: Application to global satellite soil moisture observations[J]. Environmental modelling & software,2012,30:139-142.
    [24] CIRAOLO L, AZPILICUETA F, BRUNINI C, et al. Calibration errors on experimental slant total electron content (TEC) determined with GPS[J]. Journal of geodesy,2007,81(2):111-120. DOI: 10.1007/s00190-006-0093-1
    [25] AA E, HUANG W, LIU S, et al. Midlatitude plasma bubbles over china and adjacent areas during a magnetic storm on 8 September 2017[J]. Space weather,2018,16(3):321-331. DOI: 10.1002/2017SW001776
    [26] OLIVEIRA C B A, ESPEJO T M S, MORAES A, et al. Analysis of plasma bubble signatures in total electron content maps of the low-latitude ionosphere: a simplified methodology[J]. Surveys in geophysics,2020,41:A13.
  • 加载中
图(7)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  73
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-10
  • 录用日期:  2021-11-16
  • 网络出版日期:  2021-11-16

目录

    /

    返回文章
    返回