• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微信公众号

基于多模谐振的低剖面宽带贴片天线

戴勇 李伟 江凇 王鹏程 王正斌

戴勇,李伟,江凇,等. 基于多模谐振的低剖面宽带贴片天线[J]. 电波科学学报,xxxx,x(x): x-xx. DOI: 10.12265/j.cjors.2021206
引用本文: 戴勇,李伟,江凇,等. 基于多模谐振的低剖面宽带贴片天线[J]. 电波科学学报,xxxx,x(x): x-xx. DOI: 10.12265/j.cjors.2021206
DAI Y, LI W, JIANG S, et al. Broadband and low-profile patch antenna based on multimode resonance[J]. Chinese journal of radio science,xxxx,x(x): x-xx. (in Chinese). DOI: 10.12265/j.cjors.2021206
Citation: DAI Y, LI W, JIANG S, et al. Broadband and low-profile patch antenna based on multimode resonance[J]. Chinese journal of radio science,xxxx,x(x): x-xx. (in Chinese). DOI: 10.12265/j.cjors.2021206

基于多模谐振的低剖面宽带贴片天线

doi: 10.12265/j.cjors.2021206
基金项目: 毫米波国家重点实验室开放课题(K201926)
详细信息
    作者简介:

    戴勇:(1980—),男,江苏人,国网江苏省电力有限公司信息通信分公司,硕士,研究方向为电力行业通信与信息系统应用技术

    李伟:(1975—),男,江苏人,国网江苏省电力有限公司信息通信分公司,硕士,研究方向为电力行业通信与信息系统应用技术

    江凇:(1983—),男,江苏人,国网江苏省电力有限公司信息通信分公司,硕士,研究方向为电力行业通信与信息系统应用技术

    王鹏程:(1994—),男,江苏人,南京邮电大学电子与光学工程学院,硕士,研究方向为超表面天线

    王正斌:(1978—),男,江苏人,南京邮电大学电子与光学工程学院,博士,教授,研究方向为电磁场与微波技术

    通讯作者:

    王正斌 E-mail: wangzb@njupt.edu.cn

  • 中图分类号: TN821+.5

Broadband and low-profile patch antenna based on multimode resonance

  • 摘要: 为了增加贴片天线的工作带宽和改善其辐射特性,提出了一种基于多模谐振的低剖面贴片天线。通过在矩形贴片的非辐射边加载短路壁降低H面的高交叉极化,在贴片下方加载短路销钉提高TM1/2,0模式的谐振频率(f1/2,0);然后在TM3/2,0模式的零电流位置处切割一个矩形缝隙来激发辐射缝隙模式(TMRS),得到低剖面、宽频带和低交叉极化的三模谐振贴片天线;最后通过增加贴片宽度和调整天线结构,降低TM1/2,2模式的频率(f 1/2,2),实现了四模谐振。仿真和实测结果表明该四模谐振贴片天线在0.03λ0的厚度下可将带宽增加到21.7% (2.67~3.32 GHz).
  • 图  1  三模谐振宽带贴片天线的演化过程

    Fig.  1  The evolution process of the three-mode broadband patch antenna

    2  短路销钉的位置和数量对天线谐振频率的影响

    2  Impaction of the position and number of the shorting pins on the resonant frequency

    3  缝隙长度Sy、位置Sx以及宽度Swf1/2,0f3/2,0fRS的影响

    3  Impaction of the slot on the resonant frequency, f1/2,0f3/2,0 and fRS

    图  4  有无短路壁2的三模宽带天线仿真结果对比

    Fig.  4  Comparison between the three-mode patch antenna with and without the shorting wall 2

    图  5  三模宽带天线实物图及其性能对比

    Fig.  5  The fabricated three-mode patch antenna.

    图  6  三模宽带天线的仿真和测试方向图

    Fig.  6  Simulated and measured radiation pattern of the three-mode patch antenna

    图  7  四模谐振天线的结构图及其性能对比

    Fig.  7  Exploded view and top view of the four-mode patch antenna..

    图  8  四模宽带天线场强分布图

    Fig.  8  Field distribution of the four-mode patch antenna

    图  9  四模宽带天线的仿真和测试方向图

    Fig.  9  Simulated and measured radiation pattern of the four-mode patch antenna

    表  1  四模谐振天线的结构参数

    Tab.  1  Geometric parameters of the four-mode patch antenna mm

    PxPyGxRBxBy
    56122863.154030.9
    SxSySwFxH
    16574253
    下载: 导出CSV

    表  2  本文工作与其他设计的比较

    文献剖面阻抗带宽/%最大交叉极化/dB峰值增益/ dBi
    [14]0.059λ026.2−12.38.0
    [15]0.054λ014.5−8.010.0
    [17]0.036λ033.3−9.210.8
    [18]0.032λ015.2−18.06.8
    [19]0.036λ015.305.0
    [20]0.037λ018.0−16.05.9
    本文工作0.029λ0(三模)18.0< −20.08.0
    0.03λ0
    (四模)
    21.7< −20.08.0
    下载: 导出CSV
  • [1] GARG R. Microstrip antenna design handbook [M]. Artech House, 2001.
    [2] JIN H, CHIN K S, ChE W, et al. Differential-fed patch antenna arrays with low cross polarization and wide bandwidths[J]. IEEE antennas and wireless propagation letters,2014,13:1069-1072. DOI: 10.1109/LAWP.2014.2328352
    [3] KATEHI P B, ALEXOPOULOS N G, HSIA I Y. A bandwidth enhancement method for microstrip antennas[J]. IEEE transactions on antennas and propagation,1987,35,1:5-12.
    [4] POZAR D M. Microstrip antenna aperture-coupled to a microstrip line[J]. Electronics letters,1985,21(2):49-50. DOI: 10.1049/el:19850034
    [5] LUK K M, MAK C L. Broadband microstrip patch antenna[J]. Electronics letters,1998,34(15):1442-1443. DOI: 10.1049/el:19981009
    [6] LIN Q W, HANG W, XIU Y Z, et al. Printed meandering probe-fed circularly polarized patch antenna with wide bandwidth[J]. IEEE antennas & wireless propagation letters,2014,13:654-657.
    [7] 姬五胜, 杨帆, 罗全珍, 等. 超宽带微带天线的波概念迭代法分析[J]. 电波科学学报,2011,26(6):1126-1131.

    JI W S, YANG F, LUO Q Z, et al. Analysis of ultra wideband patch microstrip antenna by wave concept iterative process[J]. Chinese journal of radio science,2011,26(6):1126-1131. (in Chinese)
    [8] HUYNH T, LEE K F. Single-layer single-patch wideband microstrip antenna[J]. Electronics letters,1995,31(16):1310-1312. DOI: 10.1049/el:19950950
    [9] SHACKELFORD A, LEE K F, CHATTERJEE D. On reducing the patch size of U-slot and L-probe wideband patch antennas[C]// IEEE-APS Conference on Antennas and Propagation for Wireless Communications, Waltham, Nov. 6-8, 2000.
    [10] OOI B L, QIN S, LEONG M S. Novel design of broad-band stacked patch antenna[J]. IEEE transactions on antennas & propagation,2002,50(10):1391-1395.
    [11] XIAO S, WANG B Z, WEI S, et al. Bandwidth enhancing ultralow-profile compact patch antenna[J]. IEEE transactions on antennas and propagation,2005,53(11):3443-3447. DOI: 10.1109/TAP.2005.858838
    [12] LIU J, XUE Q, WONG H, et al. Design and analysis of a low-profile and broadband microstrip monopolar patch antenna[J]. IEEE transactions on antennas & propagation,2013,61(1):11-18.
    [13] WONG H, SO K K, GAO X. Bandwidth enhancement of a monopolar patch antenna with v-shaped slot for car-to-car and WLAN communications[J]. IEEE transactions on vehicular technology,2016,65(3):1130-1136. DOI: 10.1109/TVT.2015.2409886
    [14] LIU N W, LEI Z, FU G, et al. A low profile shorted-patch antenna with enhanced bandwidth and reduced H-plane cross-polarization[J]. IEEE transactions on antennas and propagation,2018,66(10):5602-5607. DOI: 10.1109/TAP.2018.2855730
    [15] LU W J, QING L, WANG S, et al. Design approach to a novel dual-mode wideband circular sector patch antenna[J]. IEEE transactions on antennas & propagation,2017,65(10):4980-4990.
    [16] WU Z F, LU W J, YU J, et al. Wideband null frequency scanning circular sector patch antenna under triple resonance[J]. IEEE transactions on antennas and propagation,2020,68(11):7266-7274. DOI: 10.1109/TAP.2020.2995459
    [17] JIAN R, CHEN Y, CHEN T. A low-rrofile wideband PIFA based on radiation of multi-resonant modes[J]. IEEE antennas and wireless propagation letters,2020,19(4):685-689. DOI: 10.1109/LAWP.2020.2976670
    [18] LIU N W, ZHU L, CHOI W W, et al. A low-profile aperture-coupled microstrip antenna with enhanced bandwidth under dual resonance[J]. IEEE transactions on antennas & propagation,2017,65(3):1055-1062.
    [19] LIU N W, ZHU L, CHOI W W. A low-profile wide-bandwidth planar inverted-F antenna under dual resonances: principle and design approach[J]. IEEE transactions on antennas and propagation,2017,65(10):5019-5025. DOI: 10.1109/TAP.2017.2736578
    [20] GAO G P, YANG C, HU B, et al. A wide bandwidth wearable all-textile PIFA with dual resonance modes for 5-GHz WLAN applications[J]. IEEE Transactions on antennas and propagation,2019,67(6):4206-4211. DOI: 10.1109/TAP.2019.2905976
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  193
  • HTML全文浏览量:  54
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-09
  • 网络出版日期:  2021-10-28

目录

    /

    返回文章
    返回