• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微信公众号

基于点云重建复杂城市建筑环境的电磁计算

李玉峰 周晨 张富彬 夏国臻 朱建桦

李玉峰,周晨,张富彬,等. 基于点云重建复杂城市建筑环境的电磁计算[J]. 电波科学学报,xxxx,x(x): x-xx. DOI: 10.12265/j.cjors.2021198
引用本文: 李玉峰,周晨,张富彬,等. 基于点云重建复杂城市建筑环境的电磁计算[J]. 电波科学学报,xxxx,x(x): x-xx. DOI: 10.12265/j.cjors.2021198
LI Y F, ZHOU C, ZHANG F B, et al. Electromagnetic calculation of complex urban architectual environment based on point cloud reconstruction[J]. Chinese journal of radio science,xxxx,x(x): x-xx. (in Chinese). DOI: 10.12265/j.cjors.2021198
Citation: LI Y F, ZHOU C, ZHANG F B, et al. Electromagnetic calculation of complex urban architectual environment based on point cloud reconstruction[J]. Chinese journal of radio science,xxxx,x(x): x-xx. (in Chinese). DOI: 10.12265/j.cjors.2021198

基于点云重建复杂城市建筑环境的电磁计算

doi: 10.12265/j.cjors.2021198
详细信息
    作者简介:

    李玉峰:(1997—),男,安徽人,武汉大学电子信息学院硕士研究生,研究方向为电波传播与城市电磁环境建模

    周晨:(1983—),男,湖北人,武汉大学电子信息学院教授,主要研究方向为空间环境探测技术和电波传播应用

    张富彬:(1998—),男,河南人,武汉大学电子信息学院博士研究生,主要研究方向为电离层物理、电磁兼容技术

    通讯作者:

    周晨 E-mail: chenzhou@whu.edu.cn

  • 中图分类号: 中图分类号 文献标志码 A

Electromagnetic calculation of complex urban architectual environment based on point cloud reconstruction

  • 摘要: 在现代城市环境中,地形地貌地物复杂,精确评估电波传播效应十分困难. 针对传统城市建筑环境电磁计算物理建模不够精确的问题,提出利用多视角立体视觉的方法对城市复杂建筑环境进行基于点云的三维重建,获取精确的三角网格模型,并通过机器学习图像分割的方法获取城市环境边界电磁属性;在此基础上进行基于一致性绕射理论的射线追踪电磁计算,从而获取区域范围内的电磁态势分布. 通过在不同分辨率网格模型上计算,并与COST231-Hata模型和实际测量结果对比,高分辨率网格模型的均方根误差为6.065 5 dB,证明了本文建模及计算方法的有效性.
  • 图  1  点云重建流程图

    Fig.  1  Point cloud reconstruction process

    图  2  电磁介质语义分割

    Fig.  2  Semantic segmentation of electromagnetic media

    图  3  区域密集点云

    Fig.  3  Regional dense point cloud

    图  4  单栋建筑密集点云

    Fig.  4  Dense point cloud of a building

    图  5  简单几何模型

    Fig.  5  Simple geometric model

    图  6  表面重建获取网格模型及简化

    Fig.  6  Surface reconstruction to obtain mesh model and simplification

    图  7  反射绕射传播示意图

    Fig.  7  Schematic diagram of reflection and diffraction

    图  8  点对点多径传播

    Fig.  8  Point-to-point multipath propagation

    图  9  图8局部图

    Fig.  9  Partial view of Fig.8

    图  10  区域卫星图

    Fig.  10  Regional satellite image

    图  11  355 MHz电磁态势图

    Fig.  11  355 MHz Electromagnetic situation

    图  12  1800 MHz电磁态势图

    Fig.  12  1800 MHz Electromagnetic situation

    图  13  COST231-Hata模型电磁态势图

    Fig.  13  Electromagnetic situation of COST231-Hata model

    图  14  实测示意图

    Fig.  14  Schematic diagram of actual measurement

    图  15  仿真与实测结果对比

    Fig.  15  Comparison between simulation and actual measurement

    图  16  接收点1结果分析

    Fig.  16  Result analysis of Rx1

    图  17  接收点6结果分析

    Fig.  17  Result analysis of Rx6

    图  18  三种模型边长统计

    Fig.  18  Statistics of the model's edge length

    图  19  各接收点误差

    Fig.  19  Error of each receiver

    表  1  仿真参数表

    Tab.  1  Simulation parameters table

    仿真参数取值
    建筑数量66
    基站高度/m30
    发射功率/W0.1
    载波频率/MHz355/1 800
    虚拟接收机数量5 551
    天线模式全向天线
    带宽/MHz1
    波形正弦波
    极化方式垂直极化
    下载: 导出CSV

    表  2  实验参数表

    Tab.  2  Experimental parameters table

    实验参数取值
    实验区域1.8 km×1.2 km
    接收机数量6
    输出功率/W20
    发射天线频率/MHz355
    天线带宽15
    发射机采样点8
    发射机高度/m2
    天线模式全向天线
    天线增益/dBi3.5
    波形正弦波
    极化方式垂直极化
    下载: 导出CSV

    表  3  三种模型结果对比

    Tab.  3  Comparison of 3 model results

    模型面元数边数均方根误差/dB计算时间/s
    模型117 47040 2466.065 582
    模型28 73420 1117.922 948
    模型34 3846 5768.805 221
    下载: 导出CSV
  • [1] The right to the smart city[M]. Emerald Group Publishing, 2019.
    [2] SINGH Y. Comparison of Okumura, Hata and COST-231 models on the basis of path loss and signal strength[J]. International journal of computer applications,2012,59(11):37-41. DOI: 10.5120/9594-4216
    [3] DE JONG Y L C, HERBEN M. Prediction of local mean power using 2-D ray-tracing-based propagation models[J]. IEEE transactions on vehicular technology,2001,50(1):325-331. DOI: 10.1109/25.917957
    [4] RAPPAPORT T S. Wireless communications: principles and practice[M]. New Jersey: prentice hall PTR, 1996.
    [5] Egli J J. Radio propagation above 40 MC over irregular terrain[J]. Proceedings of the IRE,1957,45(10):1383-1391. DOI: 10.1109/JRPROC.1957.278224
    [6] KASAMPALIS S, LAZARIDIS P I, ZAHARIS Z D, et al. Comparison of Longley-Rice, ITU-R P. 1546 and Hata-Davidson propagation models for DVB-T coverage prediction[C]// IEEE International Symposium on Broadband Multimedia Systems and Broadcasting. Beijing, 25-27 June, 2014.
    [7] SULLIVAN D M. Electromagnetic simulation using the FDTD method[M]. John Wiley & Sons, 2013.
    [8] HARRINGTON R F. Field computation by moment methods[M]. Wiley-IEEE Press, 1993.
    [9] TZARAS C, SAUNDERS S R. An improved heuristic UTD solution for multiple-edge transition zone diffraction[J]. IEEE transactions on antennas and propagation,2001,49(12):1678-1682. DOI: 10.1109/8.982446
    [10] GEOK T K, HOSSAIN F, KAMARUDDIN M N, et al. A comprehensive review of efficient ray-tracing techniques for wireless communication[J]. International Journal on communications antenna and propagation,2018,8(2):123-136.
    [11] YUN Z, ISKANDER M F. Ray tracing for radio propagation modeling: Principles and applications[J]. IEEE access,2015,3:1089-1100. DOI: 10.1109/ACCESS.2015.2453991
    [12] LEE J H, CHOI J S, LEE J Y, et al. 28 GHz millimeter-wave channel models in urban microcell environment using three-dimensional ray tracing[J]. IEEE antennas and wireless propagation letters,2018,17(3):426-429. DOI: 10.1109/LAWP.2018.2793872
    [13] YUN Z, ISKANDER M F, LIM S Y. The effect of 3D building reconstruction errors on propagation prediction using geospatial data in cyberspace[C]// IEEE Antennas and Propagation Society International Symposium, 2009: 1-4.
    [14] HE D, LIANG G, PORTILLA J, et al. A novel method for radio propagation simulation based on automatic 3D environment reconstruction[C]//The 6th European Conference on Antennas and Propagation (EUCAP). IEEE, 2012: 1445-1449.
    [15] SCHNABEL R, WAHL R, KLEIN R. Efficient RANSAC for point cloud shape detection[C]//Computer Graphics Forum. Oxford: Blackwell Publishing Ltd, 2007, 26(2): 214-226.
    [16] VIRK U T, WAGEN J F, HANEDA K. Simulating specular reflections for point cloud geometrical database of the environment[C]// Loughborough Antennas & Propagation Conference (LAPC). IEEE, 2-3 Nov. , 2015.
    [17] SEMKIN V, SOLOMITCKII D, NADERPOUR R, et al. Characterization of radio links at 60 GHz using simple geometrical and highly accurate 3-D models[J]. IEEE transactions on vehicular technology,2017,66(6):4647-4656. DOI: 10.1109/TVT.2016.2617919
    [18] JÄRVELÄINEN J, HANEDA K, KARTTUNEN A. Indoor propagation channel simulations at 60 GHz using point cloud data[J]. IEEE transactions on antennas and propagation,2016,64(10):4457-4467. DOI: 10.1109/TAP.2016.2598200
    [19] JÄRVELÄINEN J, KURKELA M, HANEDA K. Impacts of room structure models on the accuracy of 60 GHz indoor radio propagation prediction[J]. IEEE antennas and wireless propagation letters,2015,14:1137-1140. DOI: 10.1109/LAWP.2015.2390917
    [20] MEINEN B U, ROBINSON D T. Mapping erosion and deposition in an agricultural landscape: optimization of UAV image acquisition schemes for SFM-MVS[J]. Remote sensing of environment,2020,239:111666. DOI: 10.1016/j.rse.2020.111666
    [21] NAN L, WONKA P. Polyfit: Polygonal surface reconstruction from point clouds[C]// Proceedings of the IEEE International Conference on Computer Vision, 2017: 2353-2361.
    [22] CARLUCCIO G, ALBANI M. An efficient ray tracing algorithm for multiple straight wedge diffraction[J]. IEEE transactions on antennas and propagation,2008,56(11):3534-3542. DOI: 10.1109/TAP.2008.2005540
    [23] SCHONBERGER J L, FRAHM J M. Structure-from-motion revisited[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 4104-4113.
    [24] ZHOU H, YUAN Y, SHI C. Object tracking using SIFT features and mean shift[J]. Computer vision and image understanding,2009,113(3):345-352. DOI: 10.1016/j.cviu.2008.08.006
    [25] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with Atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference On Computer Vision (ECCV), 2018: 801-818.
    [26] BATTIATO S, CURTI S, LA CASCIA M, et al. Depth map generation by image classification[C]// Conference on Three-Dimensional Image Capture and Applications VI, 2004, 5302: 95-104.
    [27] RUSU R B, COUSINS S. 3d is here: Point cloud library (PCL)[C]// IEEE International Conference on Robotics and Automation. Shanghai, May 9-13, 2011.
    [28] HOPPE H. New quadric metric for simplifying meshes with appearance attributes[C]// Proceedings Visualization’99, IEEE, 1999.
    [29] LIM S Y, YUN Z, ISKANDER M F. Radio propagation modeling: a unified view of the ray-tracing image method across emerging indoor and outdoor environments[M]//The World of Applied Electromagnetics. Springer, Cham, 2018: 301-328.
    [30] JARNDAL A, ALNAJJAR K. MM-wave wideband propagation model for wireless communications in built-up environments[J]. Physical communication,2018,28:97-107.
    [31] JAKOBSEN K. An alternative diffraction coefficient for the wedge[J]. IEEE transactions on antennas and propagation,1984,32(2):175-177. DOI: 10.1109/TAP.1984.1143280
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  57
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-28
  • 网络出版日期:  2021-10-25

目录

    /

    返回文章
    返回