Design and implementation of one-dimensional liquid crystal holographic coding phased array antenna
-
摘要: 针对小型极化相控阵雷达精确信号目标探测应用背景,为降低传统T/R相控阵天馈系统设计及调试复杂度,满足低功耗、低损耗、低成本制造、轻薄等应用需求,提出了一种液晶全息编码相控阵天线. 主体采用小型化全息辐射单元、慢波结构、平行板波导馈电系统构成的一维全息电控扫描相控阵天线. 利用成熟液晶面板制造工艺,通过控制全息辐射单元下方液晶分子的偏转状态调节天线谐振频点,组成全息编码相控阵天线. 天线结构通过仿真优化确定,并在实物加工和测量基础上通过全息优化算法及电压灰度控制降低由耦合作用引入的副瓣性能恶化度,用梯度递减的搜索算法结合适当的目标函数优化算法实现方向图的最优控制. 实测结果表明,该天线的波束扫描角度达到±49°,经过算法优化后,波束指向角准确度改善3°,旁瓣抑制电平改善1.7 dB.Abstract: Face to the precise signal guidance application of small fully polarimetric phased array radar, in order to reduce the design and debugging complexity of traditional T/R phased array antenna and feed system, and meet the needs of low power consumption, low insert loss, low cost manufacture, low profit phased array antenna, a liquid crystal holographic coding phased array antenna is proposed. One-dimensional holographic electronically controlled scanning phased array antenna is composed of miniaturized holographic radiation unit, slow wave structure and parallel plate waveguide feeding system. Making use of mature LCD panel manufacturing process, a holographic coding phased array antenna is constructed by controlling the deflection state of the liquid crystal molecules under the holographic radiation unit to adjust the resonant frequency of the antenna. Deterioration of sidelobe performance caused by coupling effect is reduced by holographic optimization algorithm and voltage grade control based on a real object processed and tested, and the optimal control of antenna pattern is achieved by the gradient decreasing search algorithm and the optimization algorithm of the appropriate objective function. The measured results indicate that the beam scanning angle of the antenna reaches ±49°, and after optimized algorithm, the beam pointing angle accuracy reaches 3°, the sidelobe suppression level reaches 1.7 dB.
-
表 1 不同波束指向时各天线单元的激活状态
Tab. 1 Status of each antenna unit under different beam directions
波束
指向/(°)$ {x_1} $,$ {x_2} $,$ {x_3} $………………………$ {x_{23}} $,$ {x_{24}} $,$ {x_{25}} $ 50 1,1,1,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,0 30 1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0 0 1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1 −30 1,0,0,1,0,1,1,0,1,1,0,1,0,0,1,0,0,1,0,1,1,0,1,0,0 −50 1,0,1,1,0,1,0,1,0,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0,1 表 2 天线实测仿真对比
Tab. 2 Comparison of measured and simulated antenna
预设波束指向/(°) 指向角/(°) 波束宽度/(°) 旁瓣抑制/dB 仿真 测试 仿真 测试 仿真 测试 −50 −49 −46 15 20 −8.6 −2.9 −30 −32 −26 13 16 −7.2 −2.9 0 −2 +3 10 10 −7.6 −3.5 +30 +29 +25 13 11 −6.1 −3.7 +50 +49 +46 14 13 −5.1 −3.9 -
[1] 丁卓富. 平面紧凑型多功能相控阵天线阵面关键技术研究[D]. 成都: 电子科技大学, 2018.DING Z F, Research on key technologies of planar compact multifunctional phased array antenna aperture[D], Chengdu, University of Electronic Science and technology, 2018. (in Chinese) [2] 修威, 杨光, 田海燕, 等. 电磁调控液晶相控阵天线发展现状[J]. 天地一体化信息网络,2020,1(2):109-115.XIU W, YANG G, TIAN H Y, et al. Development of electrically controlled liquid crystal phased array antenna[J]. Telecommunications technology,2020,1(2):109-115. (in Chinese) [3] 修威, 庞晨, 李永祯, 等. 一种双极化液晶阵列天线设计与方向图综合方法[J]. 电波科学学报,2019,34(6):701-709.XIU W, PANG C, LI Y Z, et al. Design and pattern synthesis method of dual polarization liquid crystal array antenna[J]. Chinese journal of radio science,2019,34(6):701-709. (in Chinese) [4] KARABEY O H, GAEBLER A, STRUNCK S, et al. A 2-D electronically steered phased-array antenna with 22 elements in LC display technology[J]. IEEE transactions on microwave theory and techniques,2012,60(5):1297-1306. DOI: 10.1109/TMTT.2012.2187919 [5] ZHAO Y, HUANG C, QING A Y, et al. A frequency and pattern reconfigurable antenna array based on liquid crystal technology[J]. IEEE photonics journal,2017,9(3):4600307. [6] BRAUN H, KARABEY O H, LETZ M, et al. Liquid crystal based phased array antenna with improved beam scanning capability[J]. Electronics letters,2014,50(6):426-428. DOI: 10.1049/el.2014.0269 [7] LUO S, LI X, FU Z, et al. Two-dimensional electronically controlled scanning phased array antenna based on liquid crystal material[C]// IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 2019. [8] BILDIK S, DIETER S, FRITZSCH C, et al. Reconfigurable folded reflectarray antenna based upon liquid crystal technology[J]. IEEE transactions on antennas & propagation,2014,63(1):122-132. [9] YUSOFF M, SAULEAU R, JOHARI Z, et al. A novel right handed circular polarization folded reflectarray antenna at 60 GHz[J]. International journal of electrical & computer engineering,2017,7(3):1580-1587. [10] REESE R, JOST M, POLAT E, et al. A millimeter-wave beam-steering lens antenna with reconfigurable aperture using liquid crystal[J]. IEEE transactions on antennas and propagation,2019,67(8):5313-5324. DOI: 10.1109/TAP.2019.2918474 [11] JOHNSON M C, BRUNTON S L, KUNDTZ N B, et al. Sidelobe canceling for reconfigurable holographic metamaterial antenna[J]. IEEE transactions on antennas & propagation,2015,63(4):1881-1886. [12] HORN R E, JACOBS H, FREIBERGS E, et al. Electronic modulated beam-steerable silicon waveguide array antenna[J]. IEEE transactions on microwave theory techniques,1980,28(6):647-653. DOI: 10.1109/TMTT.1980.1130133 [13] 杨帆, 许慎恒, 刘骁, 等. 基于界面电磁学的新型相控阵天线[J]. 电波科学学报,2018,33(3):256-265.YANG F, XU S H, LIU X, et al. Novel phased array antennas based on surface electromagnetics[J]. Chinese journal of radio science,2018,33(3):256-265. (in Chinese) [14] YURDUSEVEN O, MARKS D L, FROMENTEZE T, et al. Dynamically reconfigurable holographic metasurface aperture for a mills-cross monochromatic microwave camera[J]. Optics express,2018,26(5):281-5291. [15] BOYARSKY M, SLEASMAN T, PULIDO-MANCERA L, et al. Synthetic aperture radar with dynamic metasurface antennas: a conceptual development[J]. Journal of the Optical Society of America A,2017,34(5):22. DOI: 10.1364/JOSAA.34.000A22 [16] ZVOLENSKY T, CHICHERIN D, RAISANEN A V, et al. Leaky-wave antenna based on microelectromechanical systems-loaded microstrip line[J]. IET microwaves antennas & propagation,2011,5(3):357-363. [17] APAYDIN N, SERTEL K, VOLAKIS J Y, et al. Nonreciprocal leaky-wave antenna based on coupled microstrip lines on a non-uniformly biased ferrite substrate[J]. IEEE transactions on antennas & propagation,2013,61(7):458-3465. [18] APAYDIN N, SERTEL K, VOLAKIS J L. Nonreciprocal and magnetically scanned leaky-wave antenna using coupled CRLH Lines[J]. IEEE transactions on antennas & propagation,2014,62(6):2954-2961. [19] 刘宇航. 液晶全息电控扫描天线设计方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.LIU Y H, Research on design method of holographic electronically controlled scanning antenna based on liquid crystal[D]. Harbin, Harbin Institute of technology, 2020. (in Chinese) -