Research on non-ideal waveform modulation of time modulation array antenna
-
摘要: 针对时间调制阵列天线中射频开关的非理想特性,开展了多种波形调制下的谐波特性研究. 首先,推导了非对称梯形波/升余弦波周期调制的傅里叶系数,分析两种调制波的非对称性对各次谐波的幅度、相位和能量占比的影响;在此基础上,通过实验获得了一组实验调制波,并运用三角函数多项式拟合真实调制波形的上升沿与下降沿. 最后,讨论了各种波调制与实测谐波分量的差异性. 结果表明,与已有调制波相比,本文所提出的非对称梯形波、非对称升余弦波和拟合波的调制更接近真实波调制.
-
关键词:
- 时间调制阵列(TMA) /
- 开关非理想特性 /
- 周期调制 /
- 傅里叶系数
Abstract: In this paper, aiming at the non-ideal characteristics of the radio frequency switch in the time-modulated array antenna, the harmonic characteristics of various modulation waveforms are studied. First, the Fourier coefficients of the asymmetric trapezoidal/raised cosine waveforms are deduced, and the influence on amplitude, phase and energy proportion of two waveforms are analyzed. On this basis, an experimental modulation waveform are obtained through experiments, and trigonometric polynomials are used to fit the rising and falling edges of the real modulation waveform. Finally, the difference between various waveforms and harmonics is discussed. The results show that compared with existing modulation waveforms, the modulations of the asymmetric trapezoidal waveform, asymmetric raised cosine waveform and the fitted waveform proposed in this paper are closer to real waveform. -
表 1 上升沿曲线f1(t)参数
Tab. 1 Parameters of rising curve f1(t)
项数 al bl cl l=1 3.329 28.94 −0.257 l=2 2.794 31.90 2.846 l=3 0.055 103.30 3.360 表 2 下降沿曲线f2(t)参数
Tab. 2 Parameters of falling curve f2(t)
项数 al bl cl l=1 0.602 8 10.59 8.118 l=2 0.525 8 26.97 13.860 l=3 0.094 0 84.72 9.813 l=4 0.020 0 164.90 23.090 表 3 不同调制波形下的归一化谐波分量比较
Tab. 3 Comparison of normalized harmonic components under different modulation waveforms
调制波形 基波/dB +1次
谐波/dB+2次
谐波/dB+3次
谐波/dB+4次
谐波/dB+5次
谐波/dBtoff, n−ton, n=Tp 矩形[8] δ=0, ξ=Tp 0 N/A N/A N/A N/A N/A 对称梯形[8] δ=0.1Tp
k=1,
ξ=0.8Tp0 −19.37 −20.24 −21.74 −23.92 −26.93 对称升余弦[8] 0 −19.31 −20.00 −21.15 −22.83 −34.20 非对称梯形 δ=0.1Tp
k=1.2,
ξ=0.78Tp0 −18.51 −19.57 −21.40 −24.11 −27.89 非对称升余弦 0 −18.43 −19.26 −20.68 −22.75 −35.90 toff, n−ton, n=0.5Tp 矩形[8] δ=0, ξ=0.5Tp 0 −3.90 −52.07 −17.60 −52.27 −25.32 对称梯形[8] δ=0.1Tp
k=1.2,
ξ=0.28Tp0 −4.32 −31.25 −15.00 −32.94 −21.91 对称升余弦[8] 0 −4.26 −31.02 −14.48 −31.96 −20.29 非对称梯形 δ=0.1Tp
k=1.2
ξ=0.28Tp0 −3.94 −35.11 −14.94 −35.67 −22.60 非对称升余弦 0 −3.87 −35.18 −14.23 −35.85 −20.35 实验波形 0 −3.80 −27.28 −14.28 −27.72 −20.49 拟合波形 0 −3.72 −30.97 −14.37 −30.19 −21.60 -
[1] SHANKS H E, BICKMORE R W. Four-dimensional electromagnetic radiatiors[J]. Canadian journal of physics,1959,37(3):263-275. DOI: 10.1139/p59-031 [2] CHEN K, YANG S, CHEN Y, et al. Transmit beamforming based on 4-D antenna arrays for low probability of intercept systems[J]. IEEE transactions on antennas and propagation,2020,68(5):3625-3634. DOI: 10.1109/TAP.2019.2963593 [3] YANG S W, NIE Z P. Mutual coupling compensation in time modulated linear antenna arrays[J]. IEEE transactions on antennas and propagation,2005,53(12):4182-4185. DOI: 10.1109/TAP.2005.860000 [4] TONG Y Z, TENNANT A. Reduced sideband levels in time-modulated arrays using half-power sub-arraying techniques[J]. IEEE transactions on antennas and propagation,2011,59(1):301-303. DOI: 10.1109/TAP.2010.2090484 [5] TONG Y Z, TENNANT A. A two-channel time modulated linear array with adaptive beamforming[J]. IEEE transactions on antennas and propagation,2012,60(1):141-147. DOI: 10.1109/TAP.2011.2167936 [6] ROCCA P, POLI L, MASSA A. Instantaneous directivity optimisation in time-modulated array receivers[J]. IET microwaves, antennas and propagation,2012,6(14):1590-1597. DOI: 10.1049/iet-map.2012.0400 [7] ROCCA P, POLI L, OLIVERI G, et al. Synthesis of time-modulated planar arrays with controlled harmonic radiations[J]. Journal of electromagnetic waves and applications,2010,24(5):827-838. [8] BEKELE E T, POLI L, ROCCA P, et al. Pulse-shaping strategy for time modulated arrays: analysis and design[J]. IEEE transactions on antennas and propagation,2013,61(7):3525-3537. DOI: 10.1109/TAP.2013.2256096 [9] 姚阿敏. 时间调制阵列天线的研究[D]. 南京: 南京理工大学, 2017.YAO A M. Research on time-modulated array antennas[D]. Nanjing: Nanjing University of Science and Technology, 2017. (in Chinese) [10] MANEIRO-CATOIRA R, BRÉGAINS J, GARCÍA-NAYA J A, et al. Time-modulated phased array controlled with nonideal bipolar squared periodic sequences[J]. IEEE antennas and wireless propagation letters,2019,18(2):407-411. DOI: 10.1109/LAWP.2019.2892657 [11] BALL E A, TENNANT A. A technique to control the harmonic levels in time-modulated antenna arrays: theoretical concept and hardware verification platform[J]. IEEE transactions on antennas and propagation,2020,68(7):5375-5386. DOI: 10.1109/TAP.2020.2978894 [12] CHEN Q, ZHANG J, WU W, et al. Enhanced single-sideband time-modulated phased array with lower sideband level and loss[J]. IEEE transactions on antennas and propagation,2020,68(1):275-286. DOI: 10.1109/TAP.2019.2938711 [13] WANG C, FUSCO V F. Reduced architecture V-band transmitter[J]. IET microwaves, antennas & propagation,2010,4(11):1948-1954. -