• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微信公众号

基于聚合型涡旋电磁波束的三维SAR成像

国少卿 何姿 陈如山

国少卿,何姿,陈如山. 基于聚合型涡旋电磁波束的三维SAR成像[J]. 电波科学学报,2022,37(3):1-9. DOI: 10.12265/j.cjors.2021070
引用本文: 国少卿,何姿,陈如山. 基于聚合型涡旋电磁波束的三维SAR成像[J]. 电波科学学报,2022,37(3):1-9. DOI: 10.12265/j.cjors.2021070
GUO S Q, HE Z, CHEN R S. Three dimensional SAR imaging based on the focused electromagnetic vortex beam[J]. Chinese journal of radio science,2022,37(3):1-9. (in Chinese). DOI: 10.12265/j.cjors.2021070
Citation: GUO S Q, HE Z, CHEN R S. Three dimensional SAR imaging based on the focused electromagnetic vortex beam[J]. Chinese journal of radio science,2022,37(3):1-9. (in Chinese). DOI: 10.12265/j.cjors.2021070

基于聚合型涡旋电磁波束的三维SAR成像

doi: 10.12265/j.cjors.2021070
基金项目: 国家自然科学基金(61731001,61871443,61771246)
详细信息
    作者简介:

    国少卿:(1990—),男,南京理工大学博士研究生,主要研究方向为计算电磁学、雷达成像

    何姿:(1988—),女,南京理工大学副教授,博士,主要研究方向为计算电磁学及工程应用

    陈如山:(1965—),男,南京理工大学教授,博士研究生导师,主要研究方向为计算电磁学、天线设计与优化、微波成像等

    通讯作者:

    何姿 E-mail:zihe@njust.edu.cn

  • 中图分类号: TN959.1

Three dimensional SAR imaging based on the focused electromagnetic vortex beam

  • 摘要: 合成孔径雷达(synthetic aperture radar, SAR)能够突破天线孔径对分辨率的限制,因而得到了广泛应用. 本文提出了一种基于聚合型涡旋电磁波束的三维SAR成像方法,通过设计合适的成像几何构型,利用涡旋电磁波的相位特性实现对高度维的分辨,并推导得到高度维分辨率与模式数及雷达参数之间的关系. 考虑到回波信号中引入的涡旋相位项,对后向投影算法进行改进,实现对观测区域的三维成像,并引入稀疏重构算法减少对模式数的需求. 仿真结果表明,利用多模式聚合型涡旋电磁波束能够对分布在不同高度的目标进行准确重构,利用稀疏重构算法能够用少数模式实现高分辨三维成像. 本文提出的方法为新体制雷达成像研究提供了一定的参考.
  • 图  1  平面涡旋电磁波[22]

    Fig.  1  Plane spiral OAM wave[22]

    图  2  不同模式组合后幅度、相位随方位角的变化

    Fig.  2  Amplitude and phase distribution for different OAM mode group

    图  3  不同模式数量对波束宽度的影响

    Fig.  3  Focused beam width for different number of OAM mode

    图  4  模式间隔对聚合后主瓣个数的影响

    Fig.  4  Different number of main lobes for different mode interval

    图  5  三维SAR成像模型

    Fig.  5  Diagram of 3D SAR imaging

    图  6  高度向分辨率分析

    Fig.  6  Resolution of the height direction

    图  7  成像区域三维网格划分

    Fig.  7  Three dimensional mesh grid

    图  8  单个点目标成像结果

    Fig.  8  Imaging results of single point

    图  9  两个点目标成像结果

    Fig.  9  Imaging result of two points

    图  10  稀疏重构算法得到的两个点目标成像结果

    Fig.  10  Imaging result of two point by sparse recovery method

    图  11  稀疏重构算法得到的12个点目标成像结果

    Fig.  11  Imaging result of 12 points by sparse recovery method

    表  1  仿真参数

    Tab.  1  Simulation parameters

    参数取值
    载体平台高度H1 000 m
    速度v150 m/s
    中心频率fc5 GHz
    带宽B50 MHz
    脉冲宽度T2.5 μs
    调频率Kr20×1012 Hz/s
    天线半径r1 m
    入射角β45°
    下载: 导出CSV

    表  2  12个点目标位置

    Tab.  2  locations of the 12 points

    点目标位置/m点目标位置/m
    P1(1 020,−10,0)P7(1 020,10,50)
    P2(1 040,−10,0)P8(1 040,10,50)
    P3(1 020,10,0)P9(1 020,−10,100)
    P4(1 040,10,0)P10(1 040,−10,100)
    P5(1 020,−10,50)P11(1 020,10,100)
    P6(1 040,−10,50)P12(1 040,10,100)
    下载: 导出CSV
  • [1] ALLEN L, BEIJERSBERGEN M W, SPREEUW R J, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical review A,1992,45(11):8185-8189. DOI: 10.1103/PhysRevA.45.8185
    [2] MOHAMMADI S M, DALDORFF L K S, BERGMAN J E S, et al. Orbital angular momentum in radio system study[J]. IEEE transactions on antennas and propagation,2009,58(2):565-572.
    [3] MOHAMMADI S M, DALDORFF L K S, FOROZESH K, et al. Orbital angular momentum in radio: measurement methods[J]. Radio science,2010,45(4):1-14.
    [4] YANG Y W, CHENG W C, ZHANG W, et al. Mode modulation for wireless communications with a twist[J]. IEEE transactions on vehicular technology,2018,67(11):10704-10714. DOI: 10.1109/TVT.2018.2867566
    [5] ALLEN B, TENNANT A, BAI Q, et al. Wireless data encoding and decoding using OAM modes[J]. Electronics letters,2014,50(3):232-233. DOI: 10.1049/el.2013.3906
    [6] TAMBURINI F, MARI E, SPONSELLI A, et al. Encoding many channels in the same frequency through radio vorticity: first experimental test[J]. New journal of physics,2011,14(3):811-815.
    [7] 郭桂蓉, 胡卫东, 杜小勇. 基于电磁涡旋的雷达目标成像[J]. 国防科技大学学报,2013,35(6):71-76. DOI: 10.3969/j.issn.1001-2486.2013.06.013

    GUO G R, HU W D, DU X Y. Electromagnetic vortex based radar target imaging[J]. Journal of national university of defense technology,2013,35(6):71-76. (in Chinese) DOI: 10.3969/j.issn.1001-2486.2013.06.013
    [8] LIU K, CHENG Y Q, YANG Z C, et al. Orbital-angular momentum-based electromagnetic vortex imaging[J]. IEEE antennas and wireless propagation letters,2015,14:711-714. DOI: 10.1109/LAWP.2014.2376970
    [9] LIU K, LIU H Y, QIN Y L, et al. Generation of OAM beams using phased array in the microwave band[J]. IEEE transactions on antennas and propagation,2016,64(9):3850-3857. DOI: 10.1109/TAP.2016.2589960
    [10] YUAN T Z, WANG H Q, QIN Y L, et al. Electromagnetic vortex imaging using uniform concentric circular arrays[J]. IEEE antennas and wireless propagation letters,2016,15:1024-1027. DOI: 10.1109/LAWP.2015.2490169
    [11] ZHANG C, CHEN D, JIANG X F. RCS diversity of electromagnetic wave carrying orbital angular momentum[J]. Scientific reports,2017,7:15412. DOI: 10.1038/s41598-017-15250-7
    [12] YU M P, HAN Y P, CUI Z W. Scattering of non-diffracting vortex electromagnetic wave by typical targets[J]. Progress in electromagnetics research letters,2017,70:139-146. DOI: 10.2528/PIERL17060504
    [13] RANEY R K, RUNGE H, BAMLER R, et al. Precision SAR processing using chirp scaling[J]. IEEE transactions on geoscience and remote sensing,1994,32(4):786-799. DOI: 10.1109/36.298008
    [14] CUMMING I G, WONG F H. Digital processing of synthetic aperture radar data: algorithms and implementation[M]. Norwood: Artech House, 2005.
    [15] REIGBER A, MOREIRA A. First demonstration of airborne SAR tomography using multibaseline L-band data[J]. IEEE transactions on geoscience and remote sensing,2000,38(5):2142-2152. DOI: 10.1109/36.868873
    [16] NANNINI M, SCHEIBER R, HORN R, et al. First 3-D reconstructions of targets hidden beneath foliage by means of polarimetric SAR tomography[J]. IEEE geoscience and remote sensing letters,2012,9(1):60-64. DOI: 10.1109/LGRS.2011.2160329
    [17] 方越, 王鹏波, 陈杰. 基于轨道角动量的电磁涡旋SAR成像新方法[J]. 上海航天,2018,35(6):11-14.

    FANG Y, WANG P B, CHEN J. A novel imaging algorithm for electromagnetic vortex SAR based on orbital angular momentum[J]. Aerospace shanghai,2018,35(6):11-14. (in Chinese)
    [18] 杜永兴, 仝宗俊, 秦岭, 等. 基于改进BP算法的电磁涡旋成像方法[J]. 雷达科学与技术,2020,18(5):83-89.

    DU Y X, TONG Z J, QIN L, et al. Electromagnetic vortex imaging method based on improved BP algorithm[J]. Radar science and technology,2020,18(5):83-89. (in Chinese)
    [19] WANG J Q, LIU K, WANG H Q. Side-looking stripmap SAR based on vortex electromagnetic waves[C]//IEEE International Conference on Communications Workshops, Shanghai, May, 2019.
    [20] WANG J Q, LIU K, CHENG Y Q, et al. Three-dimensional target imaging based on vortex stripmap SAR[J]. IEEE sensors journal,2019,19(4):1338-1345. DOI: 10.1109/JSEN.2018.2879814
    [21] BU X X, ZHANG Z, CHEN L Y, et al. Implementation of vortex electromagnetic waves high-resolution synthetic aperture radar imaging[J]. IEEE antennas and wireless propagation letters,2018,17(5):764-767. DOI: 10.1109/LAWP.2018.2814980
    [22] ZHANG Z F, ZHENG S L, JIN X F, et al. Generation of plane spiral OAM waves using traveling-wave circular slot antenna[J]. IEEE antennas and wireless propagation letters,2017,16:8-11. DOI: 10.1109/LAWP.2016.2552227
    [23] ZHENG S L, CHEN Y L, ZHANG Z F, et al. Realization of beam steering based on plane spiral orbital angular momentum wave[J]. IEEE transactions on antennas and propagation,2018,66(3):1352-1358. DOI: 10.1109/TAP.2017.2786297
    [24] GOKLANI H S, SARVAIYA J N, FAHAD A M. Image reconstruction using Orthogonal Matching Pursuit (OMP) algorithm[C]//The 2nd International Conference on Emerging Technology Trends in Electronics, Communication and Networking, Surat, 2014: 1-5.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  342
  • HTML全文浏览量:  95
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-23
  • 网络出版日期:  2021-07-19

目录

    /

    返回文章
    返回