• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微信公众号

基于里德堡原子的无线电技术

付云起 林沂 武博 安强 刘燚

付云起,林沂,武博,等. 基于里德堡原子的无线电技术[J]. 电波科学学报,2022,37(2):279-287. DOI: 10.12265/j.cjors.2021051
引用本文: 付云起,林沂,武博,等. 基于里德堡原子的无线电技术[J]. 电波科学学报,2022,37(2):279-287. DOI: 10.12265/j.cjors.2021051
FU Y Q, LIN Y, WU B, et al. The radio technology based on Rydberg atom[J]. Chinese journal of radio science,2022,37(2):279-287. (in Chinese). DOI: 10.12265/j.cjors.2021051
Citation: FU Y Q, LIN Y, WU B, et al. The radio technology based on Rydberg atom[J]. Chinese journal of radio science,2022,37(2):279-287. (in Chinese). DOI: 10.12265/j.cjors.2021051

基于里德堡原子的无线电技术

doi: 10.12265/j.cjors.2021051
基金项目: 国家自然科学基金(61901495, 61601478);国防科技大学科研计划(ZK19-20,ZK20-13)
详细信息
    作者简介:

    付云起:(1975—),男,天津人,国防科技大学电子科学学院教授,研究方向为频率选择表面、新型天线技术、光学超表面、量子微波测量

    林沂:(1990—),男,福建人,国防科技大学电子科学学院讲师,研究方向为原子传感器、阵列信号处理、新体制雷达技术

    武博:(1996—),男,河北人,国防科技大学电子科学学院硕士研究生,研究方向为微波谐振器、光学超表面

    安强:(1986—),男,山东人,国防科技大学电子科学学院工程师,研究方向为激光调制与器件集成技术、光与物质相互作用

    刘燚:(1989—),男,贵州人,国防科技大学电子科学学院副教授,博士,研究方向为新型天线技术、原子无线电技术

    通讯作者:

    林沂 E-mail:linyi_886@163.com

  • 中图分类号: TB973

The radio technology based on Rydberg atom

  • 摘要: 里德堡原子是一种处于高能态的原子,拥有较大的跃迁偶极矩. 利用原子的电磁感应透明和Autler-Townes分裂效应可实现微波频段电磁场的测量和接收. 近年来,基于里德堡原子的无线电技术在通信、雷达等电子信息技术领域崭露头角,基于里德堡原子的无线电接收机实现了对调幅信号、调频信号的解调;同时,具备对脉冲信号及微波场相位信息的测量能力. 文中主要综述基于里德堡原子的无线电技术研究,详细介绍了里德堡原子接收机的基本原理与研究进展,并简单讨论了其未来发展方向.
  • 图  1  基于里德堡原子的AM/FM接收机及测试结果[37]

    Fig.  1  A Rydberg atom-based communication receiver for AM and FM radio [37]

    图  2  AM/FM调制信号的检测方案[38]

    Fig.  2  Detection scheme for an AM/FM modulated signal [38]

    图  3  接收的FM和AM调制信号的人声样本的音频波形[37]

    Fig.  3  Audio waveforms of human vocals recorded from received FM and AM modulated signal [37]

    图  4  基于里德堡原子的AM/FM多频段接收机[39]

    Fig.  4  A Rydberg atom-based multi-band communication receiver for AM/FM radio [39]

    图  5  原子混频器系统框图[32]

    Fig.  5  Diagram of Rydberg atom-based mixer [32]

    图  6  星座图测试结果[48]

    Fig.  6  Constellation measurement results [48]

    图  7  原子传感器探头[49]

    Fig.  7  Atomic sensor head [49]

    图  8  里德堡场测量系统[30]

    Fig.  8  Rydberg field measurement system[30]

    图  9  时域波形成像结果[30]

    Fig.  9  Time-domain imaging results [30]

    图  10  耦合光脉冲作用时的EIT谱 [31]

    Fig.  10  EIT spectrum with coupler laser pulse [31]

    表  1  原子通信接收机与经典通信接收机的性能对比

    Tab.  1  Performance comparison of atomic communication receivers and classical communication receivers

    通信接收机类型工作带宽瞬时带宽调制方式
    原子通信
    接收机
    基于里德堡原子
    的AM/FM接收机
    DC~THz数十 MHzAM/FM
    基于原子混频器
    的测相接收机
    亚MHzPSK/QAM
    经典通信接收机MHz~数十GHz
    (多通道、多天线)
    kHz~GHzAM/FM/
    PSK/QAM等
    下载: 导出CSV
  • [1] CHU L J. Physical limitations of omni-directional antennas[J]. Journal of applied physics,1948,19(12):1163-1175. DOI: 10.1063/1.1715038
    [2] HARRINGTON R F. Effect of antenna size on gain, bandwidth, and efficiency[J]. Journal of Research National Bureau of Standards,1960,64D(1):1-12.
    [3] MCLEAN J S. A re-examination of the fundamental limits on the radiation Q of electrically small antennas[J]. IEEE transactions on antennas and propagation,1996,44(5):672. DOI: 10.1109/8.496253
    [4] HOLLOWAY C L, GORDON J A, JEFFERTS S, et al. Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements[J]. IEEE transactions on antennas and propagation,2014,62(12):6169-6182. DOI: 10.1109/TAP.2014.2360208
    [5] 杜丽军, 于鹏飞, 倪涛, 等. 0.8~18 GHz超宽带固态发射系统的设计分析[C]// 全国微波毫米波会议论文集 (上册), 2018.
    [6] 邓阳. 宽带多通道幅相接收机的设计[D]. 南京: 东南大学, 2016.

    DENG Y. Design of broadband multi-channel amplitude & phase receiver[D]. Nanjing: Southeast University, 2016. (in Chinese)
    [7] PRASAD M N S, HUANG Y, WANG Y E. Going beyond Chu Harrington limit: ULF radiation with a spinning magnet array[C]//The XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). IEEE, 2017: 1-3.
    [8] SELVIN S, PRASAD M N S, HUANG Y, et al. Spinning magnet antenna for VLF transmitting[C]// IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2017: 1477-1478.
    [9] 崔勇, 吴明, 宋晓, 等. 小型低频发射天线的研究进展[J]. 物理学报,2020,69(20):164-176.

    CUI Y, WU M, SONG X, et al. Research progress of small low-frequency transmitting antenna[J]. Acta physica sinica,2020,69(20):164-176. (in Chinese)
    [10] ZENG R, WANG B, YU Z, et al. Design and application of an integrated electro-optic sensor for intensive electric field measurement[J]. IEEE transactions on dielectrics and electrical insulation,2011,18(1):312-319. DOI: 10.1109/TDEI.2011.5704523
    [11] LEE D J, KANG N W, CHOI J H, et al. Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing[J]. Sensors,2011,11(1):806-824. DOI: 10.3390/s110100806
    [12] 何艾生, 黎红, 张雪强, 等. 超导滤波器、超导卫星接收机和超导气象雷达的研究进展[J]. 物理,2006,35(7):599-605. DOI: 10.3321/j.issn:0379-4148.2006.07.015

    HE A S, LI H, ZHANG X Q, et al. Recent Developments of high temperature superconducting microwave filters, satellite-to ground receivers, and meteorological radar[J]. Physics,2006,35(7):599-605. (in Chinese) DOI: 10.3321/j.issn:0379-4148.2006.07.015
    [13] 陈建. S 波段多通道高温超导接收机前端研制[D]. 成都: 电子科技大学, 2008.

    CHEN J. Development of S-band multi-channel high-temperature superconducting receiver front-end[D]. Chengdu: University of electronic science and technology of china, 2008. (in Chinese)
    [14] HALL J L. Nobel lecture: defining and measuring optical frequencies[J]. Reviews of modern physics,2006,78(4):1279. DOI: 10.1103/RevModPhys.78.1279
    [15] 刘伍明, 王勋高, 王寰宇, 等. 激光冷却原子的新奇量子态与探测[J]. 中国科学: 物理学, 力学, 天文学,2020,50(8):24-38.

    LIU W M, WANG X G, WANG H Y, et al. Novel quantum states with laser cooling and their detection[J]. Scientia sinica: physica, mechanica & astronomica,2020,50(8):24-38. (in Chinese)
    [16] KONG X, ZHOU L, LI Z, et al. Artificial intelligence enhanced two-dimensional nanoscale nuclear magnetic resonance spectroscopy[J]. NPJ quantum information,2020,6(1):1-10. DOI: 10.1038/s41534-019-0235-y
    [17] YANG B, DONG Y, HU Z Z, et al. Noninvasive imaging method of microwave near field based on solid-state quantum sensing[J]. IEEE transactions on microwave theory and techniques,2018,66(5):2276-2283. DOI: 10.1109/TMTT.2018.2812204
    [18] SEDLACEK J A, SCHWETTMANN A, KÜBLER H, et al. Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell[J]. Physical review letters,2013,111(6):063001. DOI: 10.1103/PhysRevLett.111.063001
    [19] SEDLACEK J A, SCHWETTMANN A, KÜBLER H, et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature physics,2012,8(11):819-824. DOI: 10.1038/nphys2423
    [20] 黄巍, 梁振涛, 杜炎雄, 等. 基于里德堡原子的电场测量[J]. 物理学报,2015,64(16):69-76.

    HUANG W, LIANG Z T, DU Y X, et al. Rydberg-atom-based electrometry[J]. Acta physica sinica,2015,64(16):69-76. (in Chinese)
    [21] 刘笑宏, 梁洁, 陈常军, 等. 室温原子气室中基于电磁诱导透明和吸收效应的微波电场测量[J]. 华南师范大学学报(自然科学版),2020,52(3):15-21.

    LIU X H, LIANG J, CHEN C J, et al. Microwave electric field measurement based on electromagnetically-induced transparency and absorption in atomic vapor cell at room temperature[J]. Journal of South China Normal University(natural science edition),2020,52(3):15-21. (in Chinese)
    [22] MEYER D H, KUNZ P D , COX K C, et al. Waveguide-coupled Rydberg spectrum analyzer from 0 to 20 GHz[J]. Physical review applied, 2021, 15(1). DOI: 10.1103/PhysRevApplied.15.014053
    [23] FLEISCHHAUER M, IMAMOGLU A, MARANGOS J P. Electromagnetically induced transparency: optics in coherent media[J]. Reviews of modern physics,2005,77(2):633. DOI: 10.1103/RevModPhys.77.633
    [24] MOHAPATRA A K, JACKSON T R, ADAMS C S. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency[J]. Physical review letters,2007,98(11):113003. DOI: 10.1103/PhysRevLett.98.113003
    [25] AUTLER S H, TOWNES C H. Stark effect in rapidly varying fields[J]. Physical review,1955,100(2):703. DOI: 10.1103/PhysRev.100.703
    [26] PIOTROWICZ M J, MACCORMICK C, KOWALCZYK A, et al. Measurement of the electric dipole moments for transitions to rubidium Rydberg states via Autler-Townes splitting[J]. New journal of physics,2011,13(9):093012. DOI: 10.1088/1367-2630/13/9/093012
    [27] COX K C, MEYER D H, FATEMI F K, et al. Quantum-limited atomic receiver in the electrically small regime[J]. Physical review letters,2018,121(11):110502. DOI: 10.1103/PhysRevLett.121.110502
    [28] GERGINOV V, SILVA F C S D, HOWE D. Prospects for magnetic field communications and location using quantum sensors[J]. Review of scientific instruments,2017,88(12):125005. DOI: 10.1063/1.5003821
    [29] DEB A B, KJAERGAARD N. Radio-over-fiber using an optical antenna based on Rydberg states of atoms[J]. Applied physics letters,2018,112(21):211106. DOI: 10.1063/1.5031033
    [30] ANDERSON D A, SAPIRO R E, RAITHEL G. A self-calibrated si-traceable rydberg atom-based radio frequency electric field probe and measurement instrument[J]. IEEE transactions on antennas and propagation,2021,69(9):5931-5941. DOI: 10.1109/TAP.2021.3060540
    [31] ANDERSON D A, SAPIRO R E, RAITHEL G. Rydberg atoms for radio-frequency communications and sensing: atomic receivers for pulsed rf field and phase detection[J]. IEEE aerospace and electronic systems magazine,2020,35(4):48-56. DOI: 10.1109/MAES.2019.2960922
    [32] SIMONS M T, HADDAB A H, GORDON J A, et al. A Rydberg atom-based mixer: measuring the phase of a radio frequency wave[J]. Applied physics letters,2019,114(11):114101. DOI: 10.1063/1.5088821
    [33] Get ready for atom radio[EB/OL]. [2021-03-05].https://www.technologyreview.com/s/611977/get-ready-for-atomicradio/
    [34] FAN H, KUMAR S, SEDLACEK J, et al. Atom based RF electric field sensing[J]. Journal of physics B: atomic, molecular and optical physics,2015,48(20):202001. DOI: 10.1088/0953-4075/48/20/202001
    [35] 孙富宇, 马杰, 侯冬, 等. 原子微波测量技术[J]. 时间频率学报,2018,41(3):171-178.

    SUN F Y, MA J, HOU D, et al. Atomic microwave measurement technology[J]. Journal of time and frequency,2018,41(3):171-178. (in Chinese)
    [36] 金明明, 张瑞国, 高红卫, 等. 基于原子的微波场测量[J]. 量子光学学报,2020,26(1):96-108.

    JIN M M, ZHANG R G, GAO H W, et al. Atomic-based microwave field measurement[J]. Acta sinica quantum optica,2020,26(1):96-108. (in Chinese)
    [37] ANDERSON D A, SAPIRO R E, RAITHEL G. An atomic receiver for AM and FM radio communication[J]. IEEE transactions on antennas and propagation,2021,69(5):2455-2462. DOI: 10.1109/TAP.2020.2987112
    [38] SIMONS M T, GORDON J A, HOLLOWAY C L, et al. Using frequency detuning to improve the sensitivity of electric field measurements via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms[J]. Applied physics letters,2016,108(17):174101. DOI: 10.1063/1.4947231
    [39] HOLLOWAY C, SIMONS M, HADDAB A H, et al. A multiple-band Rydberg atom-based receiver: AM/FM stereo reception[J]. IEEE antennas and propagation magazine,2021,63(3):63-76. DOI: 10.1109/MAP.2020.2976914
    [40] MEYER D H, COX K C, FATEMI F K, et al. Digital communication with Rydberg atoms and amplitude-modulated microwave fields[J]. Applied physics letters,2018,112(21):211108. DOI: 10.1063/1.5028357
    [41] HOLLOWAY C L, SIMONS M T, HADDAB A H, et al. A "real-time" guitar recording using Rydberg atoms and electromagnetically induced transparency: quantum physics meets music[J]. AIP advances,2019,9(6):065110. DOI: 10.1063/1.5099036
    [42] SONG Z, LIU H, LIU X, et al. Rydberg-atom-based digital communication using a continuously tunable radio-frequency carrier[J]. Optics express,2019,27(6):8848-8857. DOI: 10.1364/OE.27.008848
    [43] GORDON J A, SIMONS M T, HADDAB A H, et al. Weak electric-field detection with sub-1 Hz resolution at radio frequencies using a Rydberg atom-based mixer[J]. AIP Advances,2019,9(4):045030. DOI: 10.1063/1.5095633
    [44] RODRIGUEZ-VAZQUEZ P, GRZYB J, HEINEMANN B, et al. A QPSK 110-Gb/s polarization-diversity MIMO wireless link with a 220–255 GHz tunable LO in a SiGe HBT technology[J]. IEEE transactions on microwave theory and techniques,2020,68(9):3834-3851. DOI: 10.1109/TMTT.2020.2986196
    [45] BI H, ZHU D, BI G, et al. FMCW SAR sparse imaging based on approximated observation: an overview on current technologies[J]. IEEE journal of selected topics in applied earth observations and remote sensing,2020,13:4825-4835. DOI: 10.1109/JSTARS.2020.3017487
    [46] JEON S Y, KIM S, KIM J, et al. W-band FMCW MIMO radar system for high-resolution multimode imaging with time-and frequency-division multiplexing[J]. IEEE transactions on geoscience and remote sensing,2020,58(7):5042-5057. DOI: 10.1109/TGRS.2020.2971998
    [47] JING M, HU Y, MA J, et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature physics,2020,16(9):1-5.
    [48] HOLLOWAY C L, SIMONS M T, GORDON J A, et al. Detecting and receiving phase-modulated signals with a Rydberg atom-based receiver[J]. IEEE antennas and wireless propagation letters,2019,18(9):1853-1857. DOI: 10.1109/LAWP.2019.2931450
    [49] SIMONS M T, HADDAB A H, GORDON J A, et al. Embedding a Rydberg atom-based sensor into an antenna for phase and amplitude detection of radio-frequency fields and modulated signals[J]. IEEE access,2019,7:164975-164985. DOI: 10.1109/ACCESS.2019.2949017
    [50] MOHAPATRA A K, BASON M G, BUTSCHER B, et al. A giant electro-optic effect using polarizable dark states[J]. Nature physics,2008,4(11):890-894. DOI: 10.1038/nphys1091
    [51] WADE C G, ŠIBALIĆ N, DE MELO N R, et al. Real-time near-field terahertz imaging with atomic optical fluorescence[J]. Nature photonics,2017,11(1):40-43. DOI: 10.1038/nphoton.2016.214
    [52] KÜBLER H, KEAVENEY J, LUI C, et al. Atom-based sensing of microwave electric fields using highly excited atoms: mechanisms affecting sensitivity[C]//Optical, Opto-Atomic, and Entanglement-Enhanced Precision Metrology. International Society for Optics and Photonics, 2019, 10934: 1093406.
    [53] PARADIS E, RAITHEL G, ANDERSON D A. Atomic measurements of high-intensity VHF-band radio-frequency fields with a Rydberg vapor-cell detector[J]. Physical review A,2019,100(1):013420. DOI: 10.1103/PhysRevA.100.013420
    [54] SIMONS M T, GORDON J A, HOLLOWAY C L. Fiber-coupled vapor cell for a portable Rydberg atom-based radio frequency electric field sensor[J]. Applied optics,2018,57(22):6456-6460. DOI: 10.1364/AO.57.006456
    [55] 乔丽君, 杨强, 柴萌萌, 等. 混沌半导体激光器研究进展[J]. 应用科学学报,2020,38(4):595-611. DOI: 10.3969/j.issn.0255-8297.2020.04.006

    QIAO L J, YANG Q, CHAI M M, et al. Progress in chaotic semiconductor lasers[J]. Journal of applied sciences,2020,38(4):595-611. (in Chinese) DOI: 10.3969/j.issn.0255-8297.2020.04.006
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  419
  • HTML全文浏览量:  177
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-05
  • 网络出版日期:  2021-10-19

目录

    /

    返回文章
    返回