The radio technology based on Rydberg atom
-
摘要: 里德堡原子是一种处于高能态的原子,拥有较大的跃迁偶极矩. 利用原子的电磁感应透明和Autler-Townes分裂效应可实现微波频段电磁场的测量和接收. 近年来,基于里德堡原子的无线电技术在通信、雷达等电子信息技术领域崭露头角,基于里德堡原子的无线电接收机实现了对调幅信号、调频信号的解调;同时,具备对脉冲信号及微波场相位信息的测量能力. 文中主要综述基于里德堡原子的无线电技术研究,详细介绍了里德堡原子接收机的基本原理与研究进展,并简单讨论了其未来发展方向.
-
关键词:
- 里德堡原子 /
- 原子传感器 /
- 原子无线电 /
- 电磁诱导透明 /
- Autler Townes(AT)分裂
Abstract: Rydberg atom is an atom in a high-energy state with a large leap dipole moment. Measurement and reception of electromagnetic fields in the microwave band can be achieved by using the electromagnetic induction transparency and the Autler-Townes splitting effect. In recent years, Rydberg atom-based radio technology has emerged in the field of communications, radar and other electronic information systems. Atomic receiver can demodulate amplitude modulated signals and FM signals, and it also has the ability to measure pulse signal and phase information. This paper mainly reviews the research of radio technology based on Rydberg atom, introduces the basic principle and research progress of atomic receivers in detail, and briefly discusses its future development. -
表 1 原子通信接收机与经典通信接收机的性能对比
Tab. 1 Performance comparison of atomic communication receivers and classical communication receivers
通信接收机类型 工作带宽 瞬时带宽 调制方式 原子通信
接收机基于里德堡原子
的AM/FM接收机DC~THz 数十 MHz AM/FM 基于原子混频器
的测相接收机亚MHz PSK/QAM 经典通信接收机 MHz~数十GHz
(多通道、多天线)kHz~GHz AM/FM/
PSK/QAM等 -
[1] CHU L J. Physical limitations of omni-directional antennas[J]. Journal of applied physics,1948,19(12):1163-1175. DOI: 10.1063/1.1715038 [2] HARRINGTON R F. Effect of antenna size on gain, bandwidth, and efficiency[J]. Journal of Research National Bureau of Standards,1960,64D(1):1-12. [3] MCLEAN J S. A re-examination of the fundamental limits on the radiation Q of electrically small antennas[J]. IEEE transactions on antennas and propagation,1996,44(5):672. DOI: 10.1109/8.496253 [4] HOLLOWAY C L, GORDON J A, JEFFERTS S, et al. Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements[J]. IEEE transactions on antennas and propagation,2014,62(12):6169-6182. DOI: 10.1109/TAP.2014.2360208 [5] 杜丽军, 于鹏飞, 倪涛, 等. 0.8~18 GHz超宽带固态发射系统的设计分析[C]// 全国微波毫米波会议论文集 (上册), 2018. [6] 邓阳. 宽带多通道幅相接收机的设计[D]. 南京: 东南大学, 2016.DENG Y. Design of broadband multi-channel amplitude & phase receiver[D]. Nanjing: Southeast University, 2016. (in Chinese) [7] PRASAD M N S, HUANG Y, WANG Y E. Going beyond Chu Harrington limit: ULF radiation with a spinning magnet array[C]//The XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). IEEE, 2017: 1-3. [8] SELVIN S, PRASAD M N S, HUANG Y, et al. Spinning magnet antenna for VLF transmitting[C]// IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2017: 1477-1478. [9] 崔勇, 吴明, 宋晓, 等. 小型低频发射天线的研究进展[J]. 物理学报,2020,69(20):164-176.CUI Y, WU M, SONG X, et al. Research progress of small low-frequency transmitting antenna[J]. Acta physica sinica,2020,69(20):164-176. (in Chinese) [10] ZENG R, WANG B, YU Z, et al. Design and application of an integrated electro-optic sensor for intensive electric field measurement[J]. IEEE transactions on dielectrics and electrical insulation,2011,18(1):312-319. DOI: 10.1109/TDEI.2011.5704523 [11] LEE D J, KANG N W, CHOI J H, et al. Recent advances in the design of electro-optic sensors for minimally destructive microwave field probing[J]. Sensors,2011,11(1):806-824. DOI: 10.3390/s110100806 [12] 何艾生, 黎红, 张雪强, 等. 超导滤波器、超导卫星接收机和超导气象雷达的研究进展[J]. 物理,2006,35(7):599-605. DOI: 10.3321/j.issn:0379-4148.2006.07.015HE A S, LI H, ZHANG X Q, et al. Recent Developments of high temperature superconducting microwave filters, satellite-to ground receivers, and meteorological radar[J]. Physics,2006,35(7):599-605. (in Chinese) DOI: 10.3321/j.issn:0379-4148.2006.07.015 [13] 陈建. S 波段多通道高温超导接收机前端研制[D]. 成都: 电子科技大学, 2008.CHEN J. Development of S-band multi-channel high-temperature superconducting receiver front-end[D]. Chengdu: University of electronic science and technology of china, 2008. (in Chinese) [14] HALL J L. Nobel lecture: defining and measuring optical frequencies[J]. Reviews of modern physics,2006,78(4):1279. DOI: 10.1103/RevModPhys.78.1279 [15] 刘伍明, 王勋高, 王寰宇, 等. 激光冷却原子的新奇量子态与探测[J]. 中国科学: 物理学, 力学, 天文学,2020,50(8):24-38.LIU W M, WANG X G, WANG H Y, et al. Novel quantum states with laser cooling and their detection[J]. Scientia sinica: physica, mechanica & astronomica,2020,50(8):24-38. (in Chinese) [16] KONG X, ZHOU L, LI Z, et al. Artificial intelligence enhanced two-dimensional nanoscale nuclear magnetic resonance spectroscopy[J]. NPJ quantum information,2020,6(1):1-10. DOI: 10.1038/s41534-019-0235-y [17] YANG B, DONG Y, HU Z Z, et al. Noninvasive imaging method of microwave near field based on solid-state quantum sensing[J]. IEEE transactions on microwave theory and techniques,2018,66(5):2276-2283. DOI: 10.1109/TMTT.2018.2812204 [18] SEDLACEK J A, SCHWETTMANN A, KÜBLER H, et al. Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell[J]. Physical review letters,2013,111(6):063001. DOI: 10.1103/PhysRevLett.111.063001 [19] SEDLACEK J A, SCHWETTMANN A, KÜBLER H, et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature physics,2012,8(11):819-824. DOI: 10.1038/nphys2423 [20] 黄巍, 梁振涛, 杜炎雄, 等. 基于里德堡原子的电场测量[J]. 物理学报,2015,64(16):69-76.HUANG W, LIANG Z T, DU Y X, et al. Rydberg-atom-based electrometry[J]. Acta physica sinica,2015,64(16):69-76. (in Chinese) [21] 刘笑宏, 梁洁, 陈常军, 等. 室温原子气室中基于电磁诱导透明和吸收效应的微波电场测量[J]. 华南师范大学学报(自然科学版),2020,52(3):15-21.LIU X H, LIANG J, CHEN C J, et al. Microwave electric field measurement based on electromagnetically-induced transparency and absorption in atomic vapor cell at room temperature[J]. Journal of South China Normal University(natural science edition),2020,52(3):15-21. (in Chinese) [22] MEYER D H, KUNZ P D , COX K C, et al. Waveguide-coupled Rydberg spectrum analyzer from 0 to 20 GHz[J]. Physical review applied, 2021, 15(1). DOI: 10.1103/PhysRevApplied.15.014053 [23] FLEISCHHAUER M, IMAMOGLU A, MARANGOS J P. Electromagnetically induced transparency: optics in coherent media[J]. Reviews of modern physics,2005,77(2):633. DOI: 10.1103/RevModPhys.77.633 [24] MOHAPATRA A K, JACKSON T R, ADAMS C S. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency[J]. Physical review letters,2007,98(11):113003. DOI: 10.1103/PhysRevLett.98.113003 [25] AUTLER S H, TOWNES C H. Stark effect in rapidly varying fields[J]. Physical review,1955,100(2):703. DOI: 10.1103/PhysRev.100.703 [26] PIOTROWICZ M J, MACCORMICK C, KOWALCZYK A, et al. Measurement of the electric dipole moments for transitions to rubidium Rydberg states via Autler-Townes splitting[J]. New journal of physics,2011,13(9):093012. DOI: 10.1088/1367-2630/13/9/093012 [27] COX K C, MEYER D H, FATEMI F K, et al. Quantum-limited atomic receiver in the electrically small regime[J]. Physical review letters,2018,121(11):110502. DOI: 10.1103/PhysRevLett.121.110502 [28] GERGINOV V, SILVA F C S D, HOWE D. Prospects for magnetic field communications and location using quantum sensors[J]. Review of scientific instruments,2017,88(12):125005. DOI: 10.1063/1.5003821 [29] DEB A B, KJAERGAARD N. Radio-over-fiber using an optical antenna based on Rydberg states of atoms[J]. Applied physics letters,2018,112(21):211106. DOI: 10.1063/1.5031033 [30] ANDERSON D A, SAPIRO R E, RAITHEL G. A self-calibrated si-traceable rydberg atom-based radio frequency electric field probe and measurement instrument[J]. IEEE transactions on antennas and propagation,2021,69(9):5931-5941. DOI: 10.1109/TAP.2021.3060540 [31] ANDERSON D A, SAPIRO R E, RAITHEL G. Rydberg atoms for radio-frequency communications and sensing: atomic receivers for pulsed rf field and phase detection[J]. IEEE aerospace and electronic systems magazine,2020,35(4):48-56. DOI: 10.1109/MAES.2019.2960922 [32] SIMONS M T, HADDAB A H, GORDON J A, et al. A Rydberg atom-based mixer: measuring the phase of a radio frequency wave[J]. Applied physics letters,2019,114(11):114101. DOI: 10.1063/1.5088821 [33] Get ready for atom radio[EB/OL]. [2021-03-05].https://www.technologyreview.com/s/611977/get-ready-for-atomicradio/ [34] FAN H, KUMAR S, SEDLACEK J, et al. Atom based RF electric field sensing[J]. Journal of physics B: atomic, molecular and optical physics,2015,48(20):202001. DOI: 10.1088/0953-4075/48/20/202001 [35] 孙富宇, 马杰, 侯冬, 等. 原子微波测量技术[J]. 时间频率学报,2018,41(3):171-178.SUN F Y, MA J, HOU D, et al. Atomic microwave measurement technology[J]. Journal of time and frequency,2018,41(3):171-178. (in Chinese) [36] 金明明, 张瑞国, 高红卫, 等. 基于原子的微波场测量[J]. 量子光学学报,2020,26(1):96-108.JIN M M, ZHANG R G, GAO H W, et al. Atomic-based microwave field measurement[J]. Acta sinica quantum optica,2020,26(1):96-108. (in Chinese) [37] ANDERSON D A, SAPIRO R E, RAITHEL G. An atomic receiver for AM and FM radio communication[J]. IEEE transactions on antennas and propagation,2021,69(5):2455-2462. DOI: 10.1109/TAP.2020.2987112 [38] SIMONS M T, GORDON J A, HOLLOWAY C L, et al. Using frequency detuning to improve the sensitivity of electric field measurements via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms[J]. Applied physics letters,2016,108(17):174101. DOI: 10.1063/1.4947231 [39] HOLLOWAY C, SIMONS M, HADDAB A H, et al. A multiple-band Rydberg atom-based receiver: AM/FM stereo reception[J]. IEEE antennas and propagation magazine,2021,63(3):63-76. DOI: 10.1109/MAP.2020.2976914 [40] MEYER D H, COX K C, FATEMI F K, et al. Digital communication with Rydberg atoms and amplitude-modulated microwave fields[J]. Applied physics letters,2018,112(21):211108. DOI: 10.1063/1.5028357 [41] HOLLOWAY C L, SIMONS M T, HADDAB A H, et al. A "real-time" guitar recording using Rydberg atoms and electromagnetically induced transparency: quantum physics meets music[J]. AIP advances,2019,9(6):065110. DOI: 10.1063/1.5099036 [42] SONG Z, LIU H, LIU X, et al. Rydberg-atom-based digital communication using a continuously tunable radio-frequency carrier[J]. Optics express,2019,27(6):8848-8857. DOI: 10.1364/OE.27.008848 [43] GORDON J A, SIMONS M T, HADDAB A H, et al. Weak electric-field detection with sub-1 Hz resolution at radio frequencies using a Rydberg atom-based mixer[J]. AIP Advances,2019,9(4):045030. DOI: 10.1063/1.5095633 [44] RODRIGUEZ-VAZQUEZ P, GRZYB J, HEINEMANN B, et al. A QPSK 110-Gb/s polarization-diversity MIMO wireless link with a 220–255 GHz tunable LO in a SiGe HBT technology[J]. IEEE transactions on microwave theory and techniques,2020,68(9):3834-3851. DOI: 10.1109/TMTT.2020.2986196 [45] BI H, ZHU D, BI G, et al. FMCW SAR sparse imaging based on approximated observation: an overview on current technologies[J]. IEEE journal of selected topics in applied earth observations and remote sensing,2020,13:4825-4835. DOI: 10.1109/JSTARS.2020.3017487 [46] JEON S Y, KIM S, KIM J, et al. W-band FMCW MIMO radar system for high-resolution multimode imaging with time-and frequency-division multiplexing[J]. IEEE transactions on geoscience and remote sensing,2020,58(7):5042-5057. DOI: 10.1109/TGRS.2020.2971998 [47] JING M, HU Y, MA J, et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature physics,2020,16(9):1-5. [48] HOLLOWAY C L, SIMONS M T, GORDON J A, et al. Detecting and receiving phase-modulated signals with a Rydberg atom-based receiver[J]. IEEE antennas and wireless propagation letters,2019,18(9):1853-1857. DOI: 10.1109/LAWP.2019.2931450 [49] SIMONS M T, HADDAB A H, GORDON J A, et al. Embedding a Rydberg atom-based sensor into an antenna for phase and amplitude detection of radio-frequency fields and modulated signals[J]. IEEE access,2019,7:164975-164985. DOI: 10.1109/ACCESS.2019.2949017 [50] MOHAPATRA A K, BASON M G, BUTSCHER B, et al. A giant electro-optic effect using polarizable dark states[J]. Nature physics,2008,4(11):890-894. DOI: 10.1038/nphys1091 [51] WADE C G, ŠIBALIĆ N, DE MELO N R, et al. Real-time near-field terahertz imaging with atomic optical fluorescence[J]. Nature photonics,2017,11(1):40-43. DOI: 10.1038/nphoton.2016.214 [52] KÜBLER H, KEAVENEY J, LUI C, et al. Atom-based sensing of microwave electric fields using highly excited atoms: mechanisms affecting sensitivity[C]//Optical, Opto-Atomic, and Entanglement-Enhanced Precision Metrology. International Society for Optics and Photonics, 2019, 10934: 1093406. [53] PARADIS E, RAITHEL G, ANDERSON D A. Atomic measurements of high-intensity VHF-band radio-frequency fields with a Rydberg vapor-cell detector[J]. Physical review A,2019,100(1):013420. DOI: 10.1103/PhysRevA.100.013420 [54] SIMONS M T, GORDON J A, HOLLOWAY C L. Fiber-coupled vapor cell for a portable Rydberg atom-based radio frequency electric field sensor[J]. Applied optics,2018,57(22):6456-6460. DOI: 10.1364/AO.57.006456 [55] 乔丽君, 杨强, 柴萌萌, 等. 混沌半导体激光器研究进展[J]. 应用科学学报,2020,38(4):595-611. DOI: 10.3969/j.issn.0255-8297.2020.04.006QIAO L J, YANG Q, CHAI M M, et al. Progress in chaotic semiconductor lasers[J]. Journal of applied sciences,2020,38(4):595-611. (in Chinese) DOI: 10.3969/j.issn.0255-8297.2020.04.006 -