• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微信公众号

一种基于正交向量的极化相关衰减效应消除方法

罗章凯 裴忠民 熊伟 王新敏

罗章凯,裴忠民,熊伟,等. 一种基于正交向量的极化相关衰减效应消除方法[J]. 电波科学学报,2022,37(2):342-348 + 356. DOI: 10.12265/j.cjors.2021036
引用本文: 罗章凯,裴忠民,熊伟,等. 一种基于正交向量的极化相关衰减效应消除方法[J]. 电波科学学报,2022,37(2):342-348 + 356. DOI: 10.12265/j.cjors.2021036
LUO Z K, PEI Z M, XIONG W, et al. Orthogonal vector based transmission method for polarization dependent loss effect elimination[J]. Chinese journal of radio science,2022,37(2):342-348 + 356. (in Chinese). DOI: 10.12265/j.cjors.2021036
Citation: LUO Z K, PEI Z M, XIONG W, et al. Orthogonal vector based transmission method for polarization dependent loss effect elimination[J]. Chinese journal of radio science,2022,37(2):342-348 + 356. (in Chinese). DOI: 10.12265/j.cjors.2021036

一种基于正交向量的极化相关衰减效应消除方法

doi: 10.12265/j.cjors.2021036
基金项目: 国家自然科学基金青年基金(61901523);国防科技重点实验室基础研究项目(DXZT-JC-ZZ-2019-003);信息安全实验基础研究项目(2020XXAQ05)
详细信息
    作者简介:

    罗章凯:(1989—),男,助理研究员,博士,主要研究方向为计算机科学与技术、系统科学

    裴忠民:(1976—),男,副研究员,博士,主要研究方向为计算机科学与技术、系统科学

    熊伟:(1989—),男,研究员,博士,主要研究方向为系统科学

    王新敏:(1974—),男,助理研究员,硕士,主要研究方向为系统科学

    通讯作者:

    裴忠民 E-mail:peizhongmin@tsinghua.org.cn

  • 中图分类号: TN911

Orthogonal vector based transmission method for polarization dependent loss effect elimination

  • 摘要: 针对双极化通信场景下正交极化信号串扰导致的解调性能恶化问题,提出了一种基于正交向量的极化相关衰减效应消除方法. 该方法通过对发送信号进行设计,利用一组正交向量分别在发射端和接收端对极化信号进行处理,达到消除极化间串扰的目的,同时在发送端利用估计的信道参数处理发送信号,进一步消除非理想信道影响. 在不改变噪声功率的基础上,实现正交极化信号的无串扰接收,有效提高接收端信号解调性能. 理论分析和仿真结果表明,极化状态调制信号的解调误码率逼近高斯信道下的理论值,相比于预补偿方法和迫零矩阵法有更好的误码率性能,仿真结果与理论推导具有较好的一致性. 本文方法能有效解决无线信道中正交极化信号间串扰,提高接收端信号解调性能.
  • 图  1  系统模型

    Fig.  1  System model

    图  2  PM星座点变换示意图

    Fig.  2  Transformation of PM constellation point

    图  3  发射端信号处理流程

    Fig.  3  Signal processing at transmitter side

    图  4  接收端信号处理流程

    Fig.  4  Signal processing at receiver side

    图  5  极化状态解调

    Fig.  5  Polarization state demodulation

    图  6  PM星座图

    Fig.  6  PM constellation

    图  7  不同阶数情况下OVB方法误符号率与PM理论值比较

    Fig.  7  SER performance comparison of OVB and theoretical value with different PM orders

    图  8  解调参数${\;{\boldsymbol{\rho}} _{\bf{r}}}$对OVB方法解调性能影响

    Fig.  8  Effect of different ${\;{\boldsymbol{\rho}} _{\bf{r}}}$ on the demodulation performance of the OVB method

    图  9  PDL效应消除方法对比

    Fig.  9  PDL effect elimination performance comparison

  • [1] ZENG J, WANG D, XU W, et al. An efficient detection algorithm of pilot spoofing attack in massive MIMO systems[J]. Signal processing,2021,182(1):107962.
    [2] HENAREJOS P, PEREZ-NEIRA A. Dual polarized modulation and reception for next generation mobile satellite communications[J]. IEEE transactions on communications,2015,63(10):3803-3812. DOI: 10.1109/TCOMM.2015.2461221
    [3] HEMADEH I A, XIAO P, KABIRI Y, et al. Polarization modulation design for reduced RF chain wireless[J]. IEEE transactions on communications,2020,68(6):3890-3907. DOI: 10.1109/TCOMM.2020.2979455
    [4] DONG W, FENG C, GUO C, et al. An energy efficient polarization modulation scheme for nonlinear power amplifier[C]//IEEE Globecom Workshops. Anaheim, CA, 2012: 69-74.
    [5] DONG W, FENG C, GUO C. Polarization mode dispersion tolerant subcarrier-power allocation for improving the power amplifier energy efficiency of joint polarization-amplitude-phase modulation[C]//IEEE 77th Vehicular Technology Conference. Dresden, 2-5 June, 2013: 1-6.
    [6] DONG W, FENG C, GUO C. A polarization-amplitude-phase modulation scheme for the power amplifier energy efficiency enhancement[C]//The 15th International Symposium on Wireless Personal Multimedia Communications (WPMC). Taipei, 2012: 369-373.
    [7] DONG W, FENG C, GUO C. An optimal pre-compensation based joint polarization-amplitude-phase modulation scheme for the power amplifier energy efficiency improvement[C]//IEEE International Conference on Communications. Budapest, 9-13 June, 2013: 4137-4142.
    [8] LUO Z K, PEI Z M, ZOU B. Polarization filtering based transmission scheme for wireless communications[J]. IEICE transactions on fundamentals of electronics communications and computer sciences,2019,E102A(10):1387-1392.
    [9] MAZZALI N, KAYHAN F, MYSORE R B S. Four-dimensional constellations for dual-polarized satellite communications[C]//IEEE International Conference on Communications (ICC). Kuala Lumpur, Malaysia, May 2016: 1-6.
    [10] LUO Z, WANG H. Dual-polarized phased array based polarization state modulation for physical-layer secure communication[J]. IEICE transactions on fundamentals of electronics, communications and computer sciences,2018,E101. A(5):740-747. DOI: 10.1587/transfun.E101.A.740
    [11] LUO Z, WANG H, ZHOU K, et al. Combined constellation rotation with weighted FRFT for secure transmission in polarization modulation based dual-polarized satellite communications[J]. IEEE access,2017,5:27061-27073. DOI: 10.1109/ACCESS.2017.2767638
    [12] LUO Z, WANG H, LYU W. Directional polarization modulation for secure transmission in dual-polarized satellite MIMO systems[C]//The 8th International Conference on Wireless Communications and Signal Processing. Yangzhou, 2016: 1-5.
    [13] LUO Z, WANG H, ZHOU K. Polarization filtering based physical-layer secure transmission scheme for dual-polarized satellite communication[J]. IEEE access,2017,5:24706-24715. DOI: 10.1109/ACCESS.2017.2762726
    [14] WEI D, LIANG L, ZHANG M, et al. A polarization state modulation based physical layer security scheme for wireless communications[C]//IEEE Military Communications Conference. Baltimore, 2016: 1195-1201.
    [15] YUAN J, LIU F, GUO C, et al. A cross-polarization discrimination compensation algorithm based on polarization modulation for the power amplifier energy efficiency improvement[C]//The 19th International Symposium on Wireless Personal Multimedia Communications (WPMC). Shenzhen, 14-16 November, 2016: 31-36.
    [16] ZHAO S, ZENG Z, FENG C, et al. Power amplifier energy efficiency enhancement via adaptive polarization-QAM modulation scheme in OFDM systems[J]. IEEE access,2017,5:23751-23763. DOI: 10.1109/ACCESS.2017.2764117
    [17] ZHU J, YANG P, XIAO Y, et al. Dual polarized spatial modulation for land mobile satellite communications[C]//IEEE Globecom Workshops. Abu Dhabi, 9-13 December, 2018: 1-6.
    [18] YANG Y, XIN X, BIN J, et al. An adaptive coding method for dual-polarized mobile satellite communications[C]//The Sixth International Conference on Wireless Communications and Signal Processing. Hefei, 2014: 1-5.
    [19] 魏冬, 孔斌, 乔荣. 基于极化状态—幅度—相位调制的高效无线传输方案[J]. 中国科学: 信息科学,2015,45(10):1263-1279.

    WEI D, KONG B, QIAO R. An efficient wireless transmission scheme based on polarization state-amplitude-phase modulation[J]. China science: information science,2015,45(10):1263-1279. (in Chinese)
  • 加载中
图(9)
计量
  • 文章访问数:  166
  • HTML全文浏览量:  28
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-07
  • 网络出版日期:  2021-07-07

目录

    /

    返回文章
    返回