Signal processing for discontinuous-spectrum high-frequency radar based on sparse iterative approach
-
摘要: 在拥挤频谱环境中,雷达系统在多个非连续频段发射信号并在接收端进行综合相干处理,是一种获得等效大带宽的方式. 本文专门就非连续谱调频连续波(discontinuous spectrum-frequency modulated continuous wave, DS-FMCW)及其在高频雷达中的应用展开研究. 首先提出采样点平移方法,建立DS-FMCW快时间维的非均匀采样序列谱估计模型;随后,进一步建立DS-FMCW距离-多普勒二维谱估计模型,提出解决距离徙动的方案;最后为解决距离高旁瓣问题,基于一种适用于单次快拍的迭代式稀疏重构算法提出DS-FMCW的距离与距离-多普勒谱估计方法,并提出相应的快速谱求解方法. 仿真试验表明:所提DS-FMCW距离-多普勒处理方案能有效补偿距离徙动;当频带利用率大于20%时,所提谱估计方法能够稳定地分辨距离维间隔为雷达固有距离分辨率的1/3的两个目标,且距离估计精度优于经典最小二乘算法以及正交匹配追踪算法;所提快速算法单次迭代运算量低,适用于实时系统.
-
关键词:
- 高频雷达 /
- 非连续谱 /
- 调频连续波(FMCW) /
- 距离-多普勒处理 /
- 稀疏迭代算法
Abstract: In congested spectral environments, transmitting signals in several discontinuous frequency segments and coherent synthesizing at the receiver side is a method for obtaining signals with large equivalent bandwidth. This paper investigates the discontinuous spectrum-frequency modulated continuous wave (DS-FMCW) and its application in high frequency radar specially. Firstly, a sampling point displacement method is proposed, and a spectral analysis model of non-uniformly sampled sequences for the fast-time processing of DS-FMCW is established. Secondly, two-dimensional range-Doppler spectral estimation model is developed, and processing schemes for handling range migration are proposed for DS-FMCW. Finally, to solve the problem of high range sidelobes, range and range-Doppler spectral estimation methods for DS-FMCW are proposed based on an iterative sparse recovery algorithm which is applicable in the single-snapshot scenario. Fast implementations of these spectral estimation methods are also presented. Simulation experiments show that the proposed range-Doppler processing schemes of DS-FMCW are able to compensate the range migration effectively, and when the utilization rate of the frequency band is above 20%, the proposed spectral estimation method can steadily resolve two targets which are separated by one third of the intrinsic radar range resolution in the range domain, and its range estimation accuracy is better than the classical least-squares algorithm and the orthogonal matching pursuit algorithm. Finally, the proposed fast implementation algorithm is verified to have a low computational complexity in a single iteration, which makes it suitable for real-time systems. -
表 1 DS-FMCW信号距离-多普勒级联处理方案
Tab. 1 Range-Doppler cascading processing scheme of DS-FMCW signals
输入:式(17)表示的一个CPI的数据矩阵Y 步骤1:按照式(26)对每个快时间采样点n进行慢时间速度匹配滤波 步骤2:按照式(30)补偿快时间多普勒项 步骤3:使用谱估计算法,按照式(31)对每个速度通道依次进行距离谱
估计输出:距离-速度谱$\gamma _{p,q}^{''},p = 1, \cdots ,P,q = 1, \cdots ,Q$ 表 2 SLIM谱估计算法
Tab. 2 SLIM algorithm for spectral estimation
输入:数据向量y 步骤1:初始化γ(0), η(0) 步骤2:迭代,重复以下过程直至收敛 ${\boldsymbol{R}}(i) = {\boldsymbol{AP}}(i){{\boldsymbol{A}}^{\rm{H}}} + \eta (i){\boldsymbol{I}}$ ${\boldsymbol{\gamma }}(i + 1) = {\rm{diag}}({\boldsymbol{P}}(i)) \odot \left( {{{\boldsymbol{A}}^{\rm{H}}}{{\boldsymbol{R}}^{ - 1}}(i){\boldsymbol{y}}} \right)$ $\eta (i + 1) = \dfrac{1}{J}\left\| { {\boldsymbol{y} } - {\boldsymbol{A\gamma } }(i + 1)} \right\|_2^2$ $i \leftarrow i + 1$ 输出:谱估计值${\boldsymbol{\hat \gamma }} = {\boldsymbol{\gamma }}(i + 1)$ 表 3 FFT-SLIM谱估计算法
Tab. 3 FFT-SLIM algorithm for spectral estimation
输入:数据向量y 步骤1:初始,γ(0), η(0) 步骤2:迭代,重复以下过程直至收敛 步骤2.1:计算协方差矩阵R(i) 步骤2.1.1:根据式(45)计算${\boldsymbol{r}}$ 步骤2.1.2:根据式(43)计算${ {\boldsymbol{R} }_{\rm{c} } }(i)$ 步骤2.1.3:根据式(40)计算R(i) 步骤2.2:计算谱值${\boldsymbol{\gamma }}(i + 1)$ 步骤2.2.1:使用CG算法计算${\boldsymbol{\hat u}} = {{\boldsymbol{R}}^{ - 1}}(i){\boldsymbol{y}}$ 步骤2.2.2:使用式(47)将${\boldsymbol{\hat u}}$扩展为${ {\boldsymbol{\hat u} }_{\rm{c} } }$ 步骤2.2.3:使用式(48)计算b 步骤2.2.4:计算${\boldsymbol{\gamma }}(i + 1) = {\rm{diag}}({\boldsymbol{P}}(i)) \odot {\boldsymbol{b}}$ 步骤2.3:计算噪声功率估计η(i+1) 步骤2.3.1:根据式(49)计算d 步骤2.3.2:计算:$\eta (i + 1) = \dfrac{1}{J}{\left\| { {\boldsymbol{y} } - {\boldsymbol{Jd} } } \right\|^2}$ 步骤2.4:$i \leftarrow i + 1$ 输出:谱估计值${\boldsymbol{\hat \gamma }} = {\boldsymbol{\gamma }}(i + 1)$ 表 4 基于SLIM算法的DS-FMCW距离-多普勒处理计算复杂度
Tab. 4 Computational complexity of DS-FMCW range-Doppler processing based on SLIM algorithms
算法 联合处理方案 级联处理方案 SLIM $O(PQ{(MN)^2})$ $O(QMN) + O(QP{N^2})$ CGLS-SLIM $O({n_{ {\rm{CGLS} } } }PQMN)$ $O(QMN) + O(Q{n_{ {\rm{CGLS} } } }PN)$ FFT-SLIM - $\begin{array}{l} O(QMN) + O(QP{\log _2}P) + \\ O(Q{n_{ {\rm{CG} } } }{N^2}) \\ \end{array}$ -
[1] 纪永刚, 张杰, 王祎鸣, 等. 紧凑型高频地波雷达目标探测研究进展[J]. 中国海洋大学学报(自然科学版),2017,47(2):1-7.JI Y G, ZHANG J, WANG Y M, et al. An overview of target monitoring with compact hfswr[J]. Periodical of Ocean University of China,2017,47(2):1-7. (in Chinese) [2] ROARTY H, COOK T, HAZARD L, et al. The global high frequency radar network[J]. Frontiers in marine science,2019:6. [3] ZHAO M, LUO J, YANG Y, et al. Multi-mode target tracking in combined sky-wave and surface-wave monostatic high frequency radar[J]. IET radar, sonar & navigation,2020,14(10):1528-1536. [4] MUNDACA-MORAGA V, ABARCA-DEL-RIO R, FIGUEROA D, et al. A preliminary study of wave energy resource using an HF marine radar, application to an Eastern Southern Pacific location: advantages and opportunities[J]. Remote sensing, multidisciplinary digital publishing institute,2021,13(2):203. [5] LEONG H W H, DAWE B. Channel availability for east coast high frequency surface wave radar systems[R]. Ottawa: Defence Research Establishment Ottawa, 2001. [6] LIU Z, SU H, HU Q. Radio frequency interference cancelation for skywave over-the-horizon radar[J]. IEEE geoscience and remote sensing letters,2016,13(3):304-308. [7] GUO X, SUN H B, YEO T S. Transient interference excision in over-the-horizon radar using adaptive time-frequency analysis[J]. IEEE transactions on geoscience and remote sensing,2005,43(4):722-735. DOI: 10.1109/TGRS.2005.844291 [8] MAO X, LIU I Y. Null phase-shift polarization filtering for high-frequency radar[J]. IEEE transactions on aerospace and electronic systems,2007,43(4):1397-1408. DOI: 10.1109/TAES.2007.4441747 [9] LI M, HE Z, YANG S. Transient interference and noise suppression by complex matrix recovery with Hankel constraint[J]. IET radar, sonar & navigation,2015,9(4):437-446. [10] ZHOU Q, ZHENG H, WU X, et al. Fractional Fourier transform-based radio frequency interference suppression for high-frequency surface wave radar[J]. Remote sensing,2020,12(1):75. [11] GREEN S D, KINGSLEY S P. Investigation of wide bandwidth HF radar waveforms[C]// IEE Colloquium on Advanced Transmission Waveforms. 1995: 2/1-2/8. [12] LINDENFELD M J. Sparse frequency transmit-and-receive waveform design[J]. IEEE transactions on aerospace and electronic systems,2004,40(3):851-861. DOI: 10.1109/TAES.2004.1337459 [13] 熊俊志, 杨子杰, 周辉林. 非连续谱FMCW雷达信号分析与处理[J]. 电波科学学报,2006,21(3):377-381. DOI: 10.3969/j.issn.1005-0388.2006.03.014XIONG J Z, YANG Z J, ZHOU H L. Signal analysis and processing for discontinuous spectra FMCW radar[J]. Chinese journal of radio science,2006,21(3):377-381. (in Chinese) DOI: 10.3969/j.issn.1005-0388.2006.03.014 [14] 王勤, 万显荣, 杨子杰, 等. 基于CLEAN算法的非连续谱线性调频中断波信号处理[J]. 电波科学学报,2009,24(2):243-248. DOI: 10.3969/j.issn.1005-0388.2009.02.010WANG Q, WAN X R, YANG Z J, et al. Signal processing for discontinuous spectra FMICW based on CLEAN algorithm[J]. Chinese journal of radio science,2009,24(2):243-248. (in Chinese) DOI: 10.3969/j.issn.1005-0388.2009.02.010 [15] YU J, KROLIK J. Multiband chirp synthesis for frequency-hopped FMCW radar[C]// Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, 2009: 1315-1319. [16] 熊俊志, 杨子杰, 王勤. 基于内插/外推的非连续谱高频雷达二维处理[J]. 电波科学学报,2006,21(5):735-739. DOI: 10.3969/j.issn.1005-0388.2006.05.020XIONG J Z, YANG Z J, WANG Q. 2-D signal processing for discontinuous spectra HF radar based on interpolation/extrapolation[J]. Chinese journal of radio science,2006,21(5):735-739. (in Chinese) DOI: 10.3969/j.issn.1005-0388.2006.05.020 [17] CHEN Q, YANG Q, ZHANG X, et al. High resolution target range estimation in discontinuous spectra high frequency radar[J]. Remote sensing letters,2018,9(7):676-685. DOI: 10.1080/2150704X.2018.1465612 [18] PAN M, CHEN B, YANG M. A general range-velocity processing scheme for discontinuous spectrum FMCW signal in HFSWR applications[J]. International journal of antennas and propagation,2016:1-13. [19] TAN X, ROBERTS W, LI J, et al. Sparse learning via iterative minimization with application to MIMO radar imaging[J]. IEEE transactions on signal processing,2011,59(3):1088-1101. DOI: 10.1109/TSP.2010.2096218 [20] VU D, XUE M, TAN X, et al. A Bayesian approach to SAR imaging[J]. Digital signal processing,2013,23(3):852-858. DOI: 10.1016/j.dsp.2012.10.009 [21] VU D, XU L, XUE M, et al. Nonparametric missing sample spectral analysis and its applications to interrupted SAR[J]. IEEE journal of selected topics in signal processing,2012,6(1):1-14. DOI: 10.1109/JSTSP.2011.2168192 [22] HE X, LIU C, LIU B, et al. Sparse frequency diverse MIMO radar imaging for off-grid target based on adaptive iterative MAP[J]. Remote sensing,2013,5(2):631-647. DOI: 10.3390/rs5020631 [23] LIPA B J, BARRICK D E. FMCW signal processing[R]. California: CODAR Ocean Sensors Report, 1990: 1-23. [24] STOVE A G. Linear FMCW radar techniques[J]. IEE proceedings F: radar and signal processing,1992,139(5):343-350. DOI: 10.1049/ip-f-2.1992.0048 [25] BARRICK D E. FM/CW radar signals and digital processing[R]. Boulder: National Oceanic and Atmospheric Administration, 1973. [26] SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE transactions on antennas and propagation,1986,34(3):276-280. DOI: 10.1109/TAP.1986.1143830 [27] ROY R, KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE transactions on acoustics, speech, and signal processing,1989,37(7):984-995. DOI: 10.1109/29.32276 [28] CAPON J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE,1969,57(8):1408-1418. DOI: 10.1109/PROC.1969.7278 [29] LI J, STOICA P. An adaptive filtering approach to spectral estimation and SAR imaging[J]. IEEE transactions on signal processing,1996,44(6):1469-1484. DOI: 10.1109/78.506612 [30] STOICA P, SELEN Y. Cyclic minimizers, majorization techniques, and the expectation-maximization algorithm: a refresher[J]. IEEE signal processing magazine,2004,21(1):112-114. DOI: 10.1109/MSP.2004.1267055 [31] DANIEL J W. The conjugate gradient method for linear and nonlinear operator equations[J]. SIAM journal on numerical analysis, society for industrial and applied mathematics,1967,4(1):10-26. [32] CANDÈS E J, ROMBERG J K, TAO T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on pure and applied mathematics,2006,59(8):1207-1223. DOI: 10.1002/cpa.20124 [33] YANG Z, XIE L, ZHANG C. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE transactions on signal processing,2013,61(1):38-43. DOI: 10.1109/TSP.2012.2222378 [34] ZHANG T. Sparse recovery with orthogonal matching pursuit under RIP[J]. IEEE transactions on information theory,2011,57(9):6215-6221. DOI: 10.1109/TIT.2011.2162263 [35] HARRIS F J. On then use of windows for harmonic analysis with the discrete Fourier transform[J]. Proceedings of the IEEE,1978,66(1):51-83. DOI: 10.1109/PROC.1978.10837 -