Optimization design of coil array for cooperative magnetic induction communication
-
摘要: 磁感应通信是一种新兴的水下无线通信技术,但传统方式的磁感应通信系统路径损耗高、传输距离有限. 本文针对空心圆环线圈的点对点式与协作式的磁感应通信模型进行了理论分析,并提出了协作式通信模型中线圈摆放角度的优化设计方法以最大程度地提高通信距离,同时针对实际水下应用环境提出一种校正机制以动态消除水流影响. 研究结果表明:对于一般协作式,当间隔角度
$\left| \theta \right| \geqslant {38.53 {\text{°}} }$ 时,发射线圈T2对接收线圈R1磁通量的增加低于20%;改进T2、R1的摆放角度可以提高接收机处磁通量相对增长率,最大可比一般协作式分别高出20.30%、12.66%,且改进T2摆放角度的方法对提高整体通信能力更有效;当接收机最小灵敏度为0.1 nT时,在相同发射功率下,改进T2摆放角度的协作式磁感应通信(线圈间隔100 m)的传输距离比点对点式高出9.96%.Abstract: Magnetic induction communication is an emerging underwater wireless communication technology, but the traditional magnetic induction communication system has high path loss and limited transmission distance. In this paper, the point-to-point and cooperative magnetic induction communication models of the coreless circular coil are analyzed theoretically, and the optimal design methods of the coil placement angle in the cooperative communication model is proposed, so as to maximize the communication distance. At the same time, a correction mechanism is proposed to dynamically eliminate the influence of water flow under the actual underwater application environment. The research results show that for the general cooperative mode, when the interval angle is greater than 38.53°, the increase of magnetic flux of transmitting coil T2 to receiving coil R1 is less than 20%; the relative growth rate of magnetic flux at the receiver can be increased by changing the placement angle of T2 and R1, and can be increased by 20.3% and 12.66% respectively compared with the general cooperative mode at most, and the method of changing the placement angle of T2 is more effective to improve the whole communication ability; when the minimum sensitivity of the receiver is 0.1 nT, the transmission distance of the cooperative magnetic induction communication with changing the placement angle of T2 (coil spacing is 100 m) can be increased by 9.96% compared with the point-to-point mode under the same transmitting power. -
表 1 改进T2摆放角度的协作式测试结果
Tab. 1 Test results of cooperative magnetic induction with improved placement angle of coil T2
通信距离/cm 式(15)计算的
摆放角度/(°)实验测量中的
实际摆放角度/(°)误差/% 10 −40.6 −42 3.45 20 −71.6 −72 0.56 30 86.8 87 0.23 40 71.6 72 0.56 50 60.5 62 2.48 60 52.1 53 1.73 70 45.7 47 2.84 80 40.6 42 3.45 90 36.5 36.5 0 100 33.1 34 2.72 表 2 改进R1摆放角度的协作式测试结果
Tab. 2 Test results of cooperative magnetic induction with improved placement angle of coil R1
通信距离/cm 式(23)计算的
摆放角度/(°)实验测量中的
实际摆放角度/(°)误差/% 10 0.3 0 - 20 3.1 0 - 30 8.8 9 2.27 40 13.7 14 2.19 50 16.2 17 4.94 60 16.9 17 0.59 70 16.7 16.2 2.99 80 16.0 16 0 90 15.1 16 5.96 100 14.2 14 1.41 -
[1] SINGH G, KUMAR M. Performance analysis of electromagnetic (EM) wave in sea water medium[J]. Wireless networks,2020,26(3):2125-2135. DOI: 10.1007/s11276-019-02054-y [2] MACKENZIE K V. Nine-term equation for sound speed in the oceans[J]. The Journal of the Acoustical Society of America,1981,70(3):807-812. DOI: 10.1121/1.386920 [3] SCHIRRIPA SPAGNOLO G, COZZELLA L, LECCESE F. Underwater optical wireless communications: overview[J]. Sensors,2020,20(8):2261-2274. DOI: 10.3390/s20082261 [4] SUN Z, AKYILDIZ I F. Underground wireless communication using magnetic induction[C]// IEEE International Conference on Communications. Dresden, 2009: 1-5. [5] SUN Z, AKYILDIZ I F. Magnetic induction communications for wireless underground sensor networks[J]. IEEE transactions on antennas and propagation,2010,58(7):2426-2435. DOI: 10.1109/TAP.2010.2048858 [6] DOMINGO M C. Magnetic induction for underwater wireless communication networks[J]. IEEE transactions on antennas and propagation,2012,60(6):2929-2939. DOI: 10.1109/TAP.2012.2194670 [7] AKYILDIZ I F, WANG P, SUN Z. Realizing underwater communication through magnetic induction[J]. IEEE communications magazine,2015,53(11):42-48. DOI: 10.1109/MCOM.2015.7321970 [8] GUO H, SUN Z, WANG P. Channel modeling of MI underwater communication using tri-directional coil antenna[C]//IEEE Global Communications Conference. San Diego, 2015: 1-6. [9] GUO H, SUN Z, WANG P. Multiple Frequency Band Channel modeling and analysis for magnetic induction communication in practical underwater environments[J]. IEEE transactions on vehicular technology,2017,66(8):6619-6632. DOI: 10.1109/TVT.2017.2664099 [10] SHARMA A K, YADAV S, DANDU S N, et al. Magnetic induction-based non-conventional media communications: a review[J]. IEEE sensors journal,2017,17(4):926-940. DOI: 10.3390/s17040926 [11] 孙彦景, 吴天琦, 施文娟, 等. 无线透地通信理论与关键技术研究[J]. 工矿自动化,2017,43(9):46-53.SUN Y J, WU T Q, SHI W J, et al. Research on theory and key technologies of wireless through-the-earth communication[J]. Industry and mine automation,2017,43(9):46-53. (in Chinese) [12] 李松, 潘东跃, 孙彦景, 等. 水下环境安全监测无线磁感应通信技术研究[J]. 工矿自动化,2019,45(6):16-20.LI S, PAN D Y, SUN Y J, et al. Research on wireless magnetic induction communication technology for underwater environment safety monitoring[J]. Industry and mine automation,2019,45(6):16-20. (in Chinese) [13] NGUYEN H, AGBINYA J I, DEVLIN J. Channel characterisation and link budget of MIMO configuration in near field magnetic communication[J]. International journal of electronics and telecommunications,2013,59(3):255-262. (in Chinese) DOI: 10.2478/eletel-2013-0030 [14] ZHANG Z, LIU E, ZHENG X, et al. Cooperative magnetic induction based through-the-earth communication[C]// IEEE International Conference on Communications. Shanghai, 2014: 653-657. [15] NGUYEN H, AGBINYA J I, DEVLIN J. FPGA-based implementation of multiple modes in near field inductive communication using frequency splitting and MIMO configuration[J]. IEEE transactions on circuits and systems I: regular papers,2015,62(1):302-310. DOI: 10.1109/TCSI.2014.2359716 [16] GUO H, SUN Z. Increasing the capacity of magnetic induction communication using MIMO coil-array[C]// IEEE Global Communications Conference. Washington, 2016: 1-6. [17] 何小祥, 丁卫平, 刘建霞. 工程电磁场[M]. 北京: 电子工业出版社, 2011.HE X X, DING W P, LIU J X. Engineering electromagnetic field[M]. Beijing: Electronic industry press, 2011. (in Chinese). [18] KISSELEFF S, GERSTACKER W, SCHOBER R, et al. Channel capacity of magnetic induction based wireless underground sensor networks under practical constraints[C]// IEEE Wireless Communications and Networking Conference. Shanghai, 2013: 2603-2608. [19] 杨磊. 适用于海底观测网络的水下非接触式数据传输技术研究[D]. 杭州: 浙江大学, 2011.YANG L. The research on the underwater contactless information transmission technology for deep seafloor observatory network[D]. Zhejiang University, 2011. (in Chinese). [20] 梁兴威. 水下机器人非接触式信息交换技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.LIANG X W. Research on contactless information transmission technology for autonomous underwater vehicles[D]. Harbin: Harbin Engineering University, 2016. (in Chinese). [21] 李莉. 天线与电波传播[M]. 北京: 科学出版社, 2009.LI L. Antenna and radio wave propagation[M]. Beijing: Science press, 2009. (in Chinese). [22] 赵宇红, 张天洋, 崔岩, 等. 一种方波调制的TMR磁场探测系统设计与实现[J]. 现代电子技术,2020,43(1):148-152.ZHAO Y H, ZHANG T Y, CUI Y, et al. Design and realization of square wave modulated TMR magnetic field detection system[J]. Modern electronics technique,2020,43(1):148-152. (in Chinese) -