• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微信公众号

协作式磁感应通信的线圈阵列优化设计

王一鸣 谢旭

王一鸣,谢旭. 协作式磁感应通信的线圈阵列优化设计[J]. 电波科学学报,2022,37(2):304-313. DOI: 10.12265/j.cjors.2021022
引用本文: 王一鸣,谢旭. 协作式磁感应通信的线圈阵列优化设计[J]. 电波科学学报,2022,37(2):304-313. DOI: 10.12265/j.cjors.2021022
WANG Y M, XIE X. Optimization design of coil array for cooperative magnetic induction communication[J]. Chinese journal of radio science,2022,37(2):304-313. (in Chinese). DOI: 10.12265/j.cjors.2021022
Citation: WANG Y M, XIE X. Optimization design of coil array for cooperative magnetic induction communication[J]. Chinese journal of radio science,2022,37(2):304-313. (in Chinese). DOI: 10.12265/j.cjors.2021022

协作式磁感应通信的线圈阵列优化设计

doi: 10.12265/j.cjors.2021022
基金项目: 湖北省自然科学基金面上项目(2018CFB704)
详细信息
    作者简介:

    王一鸣:(1993—),男,河北人,海军工程大学电子工程学院硕士研究生,研究方向为无线磁感应通信

    谢旭:(1982—),男,湖南人,海军工程大学电子工程学院副教授,博士,研究方向为对潜通信及相控阵技术

    通讯作者:

    谢旭 E-mail:xiesky@163.com

  • 中图分类号: TN929.3

Optimization design of coil array for cooperative magnetic induction communication

  • 摘要: 磁感应通信是一种新兴的水下无线通信技术,但传统方式的磁感应通信系统路径损耗高、传输距离有限. 本文针对空心圆环线圈的点对点式与协作式的磁感应通信模型进行了理论分析,并提出了协作式通信模型中线圈摆放角度的优化设计方法以最大程度地提高通信距离,同时针对实际水下应用环境提出一种校正机制以动态消除水流影响. 研究结果表明:对于一般协作式,当间隔角度$\left| \theta \right| \geqslant {38.53 {\text{°}} }$时,发射线圈T2对接收线圈R1磁通量的增加低于20%;改进T2R1的摆放角度可以提高接收机处磁通量相对增长率,最大可比一般协作式分别高出20.30%、12.66%,且改进T2摆放角度的方法对提高整体通信能力更有效;当接收机最小灵敏度为0.1 nT时,在相同发射功率下,改进T2摆放角度的协作式磁感应通信(线圈间隔100 m)的传输距离比点对点式高出9.96%.
  • 图  1  载流线圈在空间中P点产生的辐射

    Fig.  1  Radiation generated by current-carrying coil at point P

    图  2  发射功率与通信距离的归一化关系

    Fig.  2  Normalized relationship between transmission power and communication distance

    图  3  多线圈协作式磁感应通信

    Fig.  3  Multi-coil cooperative magnetic induction communication

    图  4  ${\boldsymbol{\theta}} $与磁通量${{\boldsymbol{\varPhi}} _{\boldsymbol{T_{\rm{2}}}}}$的归一化关系

    Fig.  4  Normalized relationship between ${\boldsymbol{\theta}} $ and magnetic flux ${{\boldsymbol{\varPhi}} _{\boldsymbol{T_{\rm{2}}}}}$

    图  5  改进T2摆放角度的多线圈协作式磁感应通信

    Fig.  5  Multi-coil cooperative magnetic induction communication with improved placement angle of coil T2

    图  6  穿过接收线圈总磁通量最大时${\boldsymbol{\alpha}} $${\boldsymbol{\theta}} $的关系

    Fig.  6  The relationship between ${\boldsymbol{\alpha}} $ and ${\boldsymbol{\theta}} $ when the total magnetic flux through the receiving coil is maximum

    图  7  改进R1摆放角度的多线圈协作式磁感应通信

    Fig.  7  Multi-coil cooperative magnetic induction communication with improved placement angle of coil R1

    图  8  穿过接收线圈总磁通量最大时${\boldsymbol{\gamma}} $${\boldsymbol{\theta }}$的关系

    Fig.  8  The relationship between ${\boldsymbol{\gamma}}$ and ${\boldsymbol{\theta}} $ when the total magnetic flux through the receiving coil is maximum

    图  9  ${\boldsymbol{\theta}} $与磁通量相对增长率R的关系

    Fig.  9  The relationship between ${\boldsymbol{\theta}} $ and the relative growth rate R of magnetic flux

    图  10  相同发射功率下传输距离与接收线圈法向上磁感应强度大小的关系

    Fig.  10  The relationship between transmission distance and normal magnetic induction intensity of receiving coil under the same transmitting power

    图  11  协作式磁感应通信实验平台

    Fig.  11  Experimental platform for cooperative magnetic induction communication

    图  12  系统信号发生器和接收信号观察设备

    Fig.  12  System signal generator and the receiving signal observation equipment

    表  1  改进T2摆放角度的协作式测试结果

    Tab.  1  Test results of cooperative magnetic induction with improved placement angle of coil T2

    通信距离/cm式(15)计算的
    摆放角度/(°)
    实验测量中的
    实际摆放角度/(°)
    误差/%
    10 −40.6 −42 3.45
    20 −71.6 −72 0.56
    30 86.8 87 0.23
    40 71.6 72 0.56
    50 60.5 62 2.48
    60 52.1 53 1.73
    70 45.7 47 2.84
    80 40.6 42 3.45
    90 36.5 36.5 0
    100 33.1 34 2.72
    下载: 导出CSV

    表  2  改进R1摆放角度的协作式测试结果

    Tab.  2  Test results of cooperative magnetic induction with improved placement angle of coil R1

    通信距离/cm式(23)计算的
    摆放角度/(°)
    实验测量中的
    实际摆放角度/(°)
    误差/%
    10 0.3 0 -
    20 3.1 0 -
    30 8.8 9 2.27
    40 13.7 14 2.19
    50 16.2 17 4.94
    60 16.9 17 0.59
    70 16.7 16.2 2.99
    80 16.0 16 0
    90 15.1 16 5.96
    100 14.2 14 1.41
    下载: 导出CSV
  • [1] SINGH G, KUMAR M. Performance analysis of electromagnetic (EM) wave in sea water medium[J]. Wireless networks,2020,26(3):2125-2135. DOI: 10.1007/s11276-019-02054-y
    [2] MACKENZIE K V. Nine-term equation for sound speed in the oceans[J]. The Journal of the Acoustical Society of America,1981,70(3):807-812. DOI: 10.1121/1.386920
    [3] SCHIRRIPA SPAGNOLO G, COZZELLA L, LECCESE F. Underwater optical wireless communications: overview[J]. Sensors,2020,20(8):2261-2274. DOI: 10.3390/s20082261
    [4] SUN Z, AKYILDIZ I F. Underground wireless communication using magnetic induction[C]// IEEE International Conference on Communications. Dresden, 2009: 1-5.
    [5] SUN Z, AKYILDIZ I F. Magnetic induction communications for wireless underground sensor networks[J]. IEEE transactions on antennas and propagation,2010,58(7):2426-2435. DOI: 10.1109/TAP.2010.2048858
    [6] DOMINGO M C. Magnetic induction for underwater wireless communication networks[J]. IEEE transactions on antennas and propagation,2012,60(6):2929-2939. DOI: 10.1109/TAP.2012.2194670
    [7] AKYILDIZ I F, WANG P, SUN Z. Realizing underwater communication through magnetic induction[J]. IEEE communications magazine,2015,53(11):42-48. DOI: 10.1109/MCOM.2015.7321970
    [8] GUO H, SUN Z, WANG P. Channel modeling of MI underwater communication using tri-directional coil antenna[C]//IEEE Global Communications Conference. San Diego, 2015: 1-6.
    [9] GUO H, SUN Z, WANG P. Multiple Frequency Band Channel modeling and analysis for magnetic induction communication in practical underwater environments[J]. IEEE transactions on vehicular technology,2017,66(8):6619-6632. DOI: 10.1109/TVT.2017.2664099
    [10] SHARMA A K, YADAV S, DANDU S N, et al. Magnetic induction-based non-conventional media communications: a review[J]. IEEE sensors journal,2017,17(4):926-940. DOI: 10.3390/s17040926
    [11] 孙彦景, 吴天琦, 施文娟, 等. 无线透地通信理论与关键技术研究[J]. 工矿自动化,2017,43(9):46-53.

    SUN Y J, WU T Q, SHI W J, et al. Research on theory and key technologies of wireless through-the-earth communication[J]. Industry and mine automation,2017,43(9):46-53. (in Chinese)
    [12] 李松, 潘东跃, 孙彦景, 等. 水下环境安全监测无线磁感应通信技术研究[J]. 工矿自动化,2019,45(6):16-20.

    LI S, PAN D Y, SUN Y J, et al. Research on wireless magnetic induction communication technology for underwater environment safety monitoring[J]. Industry and mine automation,2019,45(6):16-20. (in Chinese)
    [13] NGUYEN H, AGBINYA J I, DEVLIN J. Channel characterisation and link budget of MIMO configuration in near field magnetic communication[J]. International journal of electronics and telecommunications,2013,59(3):255-262. (in Chinese) DOI: 10.2478/eletel-2013-0030
    [14] ZHANG Z, LIU E, ZHENG X, et al. Cooperative magnetic induction based through-the-earth communication[C]// IEEE International Conference on Communications. Shanghai, 2014: 653-657.
    [15] NGUYEN H, AGBINYA J I, DEVLIN J. FPGA-based implementation of multiple modes in near field inductive communication using frequency splitting and MIMO configuration[J]. IEEE transactions on circuits and systems I: regular papers,2015,62(1):302-310. DOI: 10.1109/TCSI.2014.2359716
    [16] GUO H, SUN Z. Increasing the capacity of magnetic induction communication using MIMO coil-array[C]// IEEE Global Communications Conference. Washington, 2016: 1-6.
    [17] 何小祥, 丁卫平, 刘建霞. 工程电磁场[M]. 北京: 电子工业出版社, 2011.

    HE X X, DING W P, LIU J X. Engineering electromagnetic field[M]. Beijing: Electronic industry press, 2011. (in Chinese).
    [18] KISSELEFF S, GERSTACKER W, SCHOBER R, et al. Channel capacity of magnetic induction based wireless underground sensor networks under practical constraints[C]// IEEE Wireless Communications and Networking Conference. Shanghai, 2013: 2603-2608.
    [19] 杨磊. 适用于海底观测网络的水下非接触式数据传输技术研究[D]. 杭州: 浙江大学, 2011.

    YANG L. The research on the underwater contactless information transmission technology for deep seafloor observatory network[D]. Zhejiang University, 2011. (in Chinese).
    [20] 梁兴威. 水下机器人非接触式信息交换技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.

    LIANG X W. Research on contactless information transmission technology for autonomous underwater vehicles[D]. Harbin: Harbin Engineering University, 2016. (in Chinese).
    [21] 李莉. 天线与电波传播[M]. 北京: 科学出版社, 2009.

    LI L. Antenna and radio wave propagation[M]. Beijing: Science press, 2009. (in Chinese).
    [22] 赵宇红, 张天洋, 崔岩, 等. 一种方波调制的TMR磁场探测系统设计与实现[J]. 现代电子技术,2020,43(1):148-152.

    ZHAO Y H, ZHANG T Y, CUI Y, et al. Design and realization of square wave modulated TMR magnetic field detection system[J]. Modern electronics technique,2020,43(1):148-152. (in Chinese)
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  216
  • HTML全文浏览量:  76
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-21
  • 网络出版日期:  2021-06-07

目录

    /

    返回文章
    返回