A dielectric-filled dual-band bandpass filter based on SISL technology
-
摘要: 为实现滤波器的小型化,基于介质集成悬置线(substrate integrated suspended line, SISL)结构提出了一种介质填充双通带滤波器的设计方案. 首先将高介电常数的介质块填充入SISL的空气腔中,提升SISL的等效介电常数,实现电路的小型化,高介电常数介质块可以直接被SISL固定;然后利用T型结连接两组工作在不同频段的滤波器从而使得两个通带相对独立;最后利用仿真软件进行优化,确定介质填充双通带滤波器的尺寸,并进行加工与测试. 仿真与测试结果表明,二者具有较好的一致性,两个通带频率内的回波损耗均优于15 dB,电路的核心尺寸为0.058λg×0.139λg(λg为SISL在第一通带中心频率处的导波波长). 此双通带滤波器具有小尺寸、自封装等优势,且所有层介质基板均采用低成本的FR4板材,降低了制造成本.
-
关键词:
- 双通带滤波器 /
- 介质集成悬置线(SISL) /
- 高介电常数介质 /
- 传输零点 /
- 小型化技术
Abstract: This paper proposes a dielectric-filled dual-band bandpass filter (DF-DBBPF) using substrate integrated suspended line (SISL) technology to realize the miniaturization of the filter. In this design, high dielectric constant material is embedded in the SISL air cavity to construct a high equivalent dielectric constant and miniaturize the circuits. The high dielectric constant material is fixed directly by the SISL cavity. Meanwhile, by using T-junctions to design the dual-band bandpass filter, each passband response can be designed independently. With the help of the EM simulation software, all the dimensions are determined and the DF-DBBPF is processed and tested. The simulated and measured results of this design have the same tendency. The return loss of the two passbands are both better than 15 dB and the size of core circuit is only 0.058λg×0.139λg, which λg represents the guided wavelength at the central frequency of the first passband. The DF-DBBPF is with the advantage of compact size and self-packaging. Meanwhile, low-cost FR4 is chosen for all seven substrate boards. -
表 1 双通带滤波器电路层的参数
Tab. 1 Parameters of the dual-band bandpass filter circuit layer
mm W1 W2 W3 W4 W5 W6 W7 W8 W9 0.15 0.15 0.15 0.15 0.15 0.3 0.15 0.2 0.15 W10 W11 W12 L1 L2 L3 L4 L5 L6 0.2 0.3 0.2 4.25 5.65 3.45 0.65 0.5 0.83 表 2 本设计与近期其他文献中双通带滤波器对比
Tab. 2 Comparison of this design with other dual-band bandpass filters in recent literatures
文献 电路面积 工作频率/GHz 自封装 传输线种类 介质基板材料 S11 /dB 通带带宽
/%插入损耗
/dB通带隔离度
/dB[1] 0.022λg 2 0.90/1.50 否 微带线 Rogers 4003 <−15/<−20 42.0/15.0 0.20/0.50 >40 [4] 0.040λg 2 2.10/3.43 否 微带线 Rogers 4003 <−10/<−15 17.1/12.2 1.40/1.90 >30 [9] 0.032λg 2 2.40/5.20 是 SISL FR4和Rogers5880 <−15/<−15 45.4/21.6 0.59/0.55 >20 [11] 0.023λg 2 2.55/3.91 是 SISL FR4和Rogers5880 <−10/<−15 13.0/5.4 2.00/3.40 >40 本文 0.008λg 2 3.55/4.96 是 SISL FR4 <−15/<−15 21.6/9.3 1.98/3.83 >30 -
[1] CHEN C F, CHANG S F, TSENG B H, et al. Compact dual-band stepped-impedance resonator filter with separate coupling paths[J]. Electronics letters,2014,50(21):1551-1552. DOI: 10.1049/el.2014.2982 [2] ZHOU L H, CHEN J X. Differential dual-band filters with flexible frequency ratio using asymmetrical shunt branches for wideband CM suppression[J]. IEEE transactions on microwave theory and techniques,2017,65(11):4606-4615. DOI: 10.1109/TMTT.2017.2700275 [3] GAO L, ZHANG X Y. High-selectivity dual-band bandpass filter using a quad-mode resonator with source-load coupling[J]. IEEE microwave and wireless components letters,2013,23(9):474-476. DOI: 10.1109/LMWC.2013.2274995 [4] ZHANG S F, WANG L T, ZHAO S H, et al. Design of dual- /tri-band BPF with controllable bandwidth based on a quintuple-mode resonator[J]. Progress in electromagnetics research letters,2019,82:129-137. [5] GAO L, ZHANG X Y, HU B J, et al. Novel multi-stub loaded resonators and their applications to various bandpass filters[J]. IEEE transactions on microwave theory and techniques,2014,62(5):1162-1172. DOI: 10.1109/TMTT.2014.2314680 [6] XU J X, ZHANG X Y. Single- and dual-band LTCC filtering switch with high isolation based on coupling control[J]. IEEE transactions on industrial electronics,2017,64(4):3137-3146. DOI: 10.1109/TIE.2016.2633534 [7] CHEN L J, LIN K H. A compact multilayer dual-band bandpass filter using shunt architecture by LTCC process for global WLAN applications[J]. Microwave and optical technology letters,2016,58(10):2493-2496. DOI: 10.1002/mop.30074 [8] MA Z L, MA K X, MOU S X, et al. Quasi-lumped-element filter based on substrate-integrated suspended line technology[J]. IEEE transactions on microwave theory and techniques,2017,65(12):5154-5161. DOI: 10.1109/TMTT.2017.2766625 [9] CHU Y T, MA K X, WANG Y Q, et al. A self-packaged low-loss and compact SISL DBBPF with multiple TZs[J]. IEEE microwave and wireless components letters,2019,29(3):192-194. DOI: 10.1109/LMWC.2019.2895563 [10] ZHANG W W, MA K X, ZHANG H, et al. Design of a compact SISL BPF with SEMCP for 5G Sub-6 GHz bands[J]. IEEE microwave and wireless components letters,2020,30(12):1121-1124. DOI: 10.1109/LMWC.2020.3030189 [11] XU W, MA K X, DU C Y. Design and loss reduction of multiple-zeros dual-band bandpass filter using SISL[J]. IEEE transactions on circuits and systems II:express briefs,2021,68(4):1168-1172. DOI: 10.1109/TCSII.2020.3035038 [12] WANG Y Q, YU M, MA K X. A compact low-pass filter using dielectric-filled capacitor on SISL platform[J]. IEEE microwave and wireless components letters,2021,31(1):21-24. DOI: 10.1109/LMWC.2020.3038705 [13] YAN N N, MA K X, FU H P. A high-permittivity dielectric material-filled SISL antenna with cavity backing[J]. IEEE antennas and wireless propagation letters,2021,20(6):1033-1037. DOI: 10.1109/LAWP.2021.3069917 [14] WANG H, CHU Q X. A compact dual-band filter with adjustable transmission zeros[C]//2009 European Microwave Conference. Rome, September 29−October 1, 2009: 117-120. [15] POZAR D M. Microwave engineering[M]. 2nd edition. New York: Wiley, 1998: 32. [16] MA K X, YEO K S, MA J G, et al. An ultra-compact hairpin band pass filter with additional zero points[J]. IEEE microwave and wireless components letters,2007,17(4):262-264. DOI: 10.1109/LMWC.2007.892955 [17] MA K X, MA J G, YEO K S, et al. A compact size coupling controllable filter with separate electric and magnetic coupling paths[J]. IEEE transactions on microwave theory and techniques,2006,54(3):1113-1119. DOI: 10.1109/TMTT.2005.864118 -