• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微信公众号

基于SISL的介质填充双通带滤波器设计

李双旭 马凯学 闫宁宁 陈雄 傅海鹏

李双旭,马凯学,闫宁宁,等. 基于SISL的介质填充双通带滤波器设计[J]. 电波科学学报,2022,37(4):629-634. DOI: 10.12265/j.cjors.2021011
引用本文: 李双旭,马凯学,闫宁宁,等. 基于SISL的介质填充双通带滤波器设计[J]. 电波科学学报,2022,37(4):629-634. DOI: 10.12265/j.cjors.2021011
LI S X, MA K X, YAN N N, et al. A dielectric-filled dual-band bandpass filter based on SISL technology[J]. Chinese journal of radio science,2022,37(4):629-634. (in Chinese). DOI: 10.12265/j.cjors.2021011
Citation: LI S X, MA K X, YAN N N, et al. A dielectric-filled dual-band bandpass filter based on SISL technology[J]. Chinese journal of radio science,2022,37(4):629-634. (in Chinese). DOI: 10.12265/j.cjors.2021011

基于SISL的介质填充双通带滤波器设计

doi: 10.12265/j.cjors.2021011
基金项目: 国家自然科学基金(61831017)
详细信息
    作者简介:

    李双旭:(1996—),男,天津大学微电子学院硕士研究生,主要研究方向为微波滤波器理论与设计

    马凯学:(1973—),男,天津大学微电子学院教授,主要研究方向为微波毫米波电路技术

    闫宁宁:(1990—),女,天津大学微电子学院讲师,主要研究方向为天线理论与设计

    陈雄:(1990—), 男,天津大学微电子学院副教授,主要研究方向为微波毫米波电路器件非线性设计与先进测量方法

    傅海鹏:(1985—),男,天津大学微电子学院副教授,主要研究方向为射频集成电路

    通讯作者:

    马凯学 E-mail: makaixue@tju.edu.cn

  • 中图分类号: TN014

A dielectric-filled dual-band bandpass filter based on SISL technology

  • 摘要: 为实现滤波器的小型化,基于介质集成悬置线(substrate integrated suspended line, SISL)结构提出了一种介质填充双通带滤波器的设计方案. 首先将高介电常数的介质块填充入SISL的空气腔中,提升SISL的等效介电常数,实现电路的小型化,高介电常数介质块可以直接被SISL固定;然后利用T型结连接两组工作在不同频段的滤波器从而使得两个通带相对独立;最后利用仿真软件进行优化,确定介质填充双通带滤波器的尺寸,并进行加工与测试. 仿真与测试结果表明,二者具有较好的一致性,两个通带频率内的回波损耗均优于15 dB,电路的核心尺寸为0.058λg×0.139λg(λg为SISL在第一通带中心频率处的导波波长). 此双通带滤波器具有小尺寸、自封装等优势,且所有层介质基板均采用低成本的FR4板材,降低了制造成本.
  • 图  1  七层SISL介质填充结构三维示意图

    Fig.  1  Three-dimensional schematic of the seven-layer SISL dielectric-filed structure

    图  2  所有层介质基板俯视图

    Fig.  2  The top view of all substrate boards

    图  3  七层SISL介质填充结构侧视图

    Fig.  3  The side view of the dielectric-filled structure based on seven-layer SISL

    图  4  SISL介质填充双通带滤波器的拓扑结构

    Fig.  4  The topology of the dielectric-filled dual-band bandpass filter based on SISL

    图  5  电路层G7结构图

    Fig.  5  Configuration of the circuit layer G7

    图  6  螺旋谐振器填充高介电常数介质块前后响应的变化

    Fig.  6  The simulation of the spiral-like resonator with or without dielectric-filled

    图  7  单一滤波单元的电磁耦合关系等效电路图

    Fig.  7  The equivalent circuit of the electromagnetic coupling relationship of a single filtering section

    图  8  不同W1值对频率响应的影响

    Fig.  8  The impact of different W1 on the frequency response

    图  9  不同W2值对频率响应的影响

    Fig.  9  The impact of different W2 on the frequency response

    图  10  多层PCB板结构以及SISL自封装介质填充双通带滤波器

    Fig.  10  Multilayer PCB structure and the self-packaged dielectric-filled dual-band bandpass filter based on SISL

    图  11  SISL介质填充双通带滤波器的仿真与测试结果

    Fig.  11  The simulated and measured results of the dielectric-filled dual-band bandpass filter based on SISL

    表  1  双通带滤波器电路层的参数

    Tab.  1  Parameters of the dual-band bandpass filter circuit layer mm

    W1W2W3W4W5W6W7W8W9
    0.150.150.150.150.150.30.150.20.15
    W10W11W12L1L2L3L4L5L6
    0.20.30.24.255.653.450.650.50.83
    下载: 导出CSV

    表  2  本设计与近期其他文献中双通带滤波器对比

    Tab.  2  Comparison of this design with other dual-band bandpass filters in recent literatures

    文献电路面积工作频率/GHz自封装传输线种类介质基板材料S11 /dB通带带宽
    /%
    插入损耗
    /dB
    通带隔离度
    /dB
    [1]0.022λg 20.90/1.50微带线Rogers 4003<−15/<−2042.0/15.00.20/0.50>40
    [4]0.040λg 22.10/3.43微带线Rogers 4003<−10/<−1517.1/12.21.40/1.90>30
    [9]0.032λg 22.40/5.20SISLFR4和Rogers5880<−15/<−1545.4/21.60.59/0.55>20
    [11]0.023λg 22.55/3.91SISLFR4和Rogers5880<−10/<−1513.0/5.42.00/3.40>40
    本文0.008λg 23.55/4.96SISLFR4<−15/<−1521.6/9.31.98/3.83>30
    下载: 导出CSV
  • [1] CHEN C F, CHANG S F, TSENG B H, et al. Compact dual-band stepped-impedance resonator filter with separate coupling paths[J]. Electronics letters,2014,50(21):1551-1552. DOI: 10.1049/el.2014.2982
    [2] ZHOU L H, CHEN J X. Differential dual-band filters with flexible frequency ratio using asymmetrical shunt branches for wideband CM suppression[J]. IEEE transactions on microwave theory and techniques,2017,65(11):4606-4615. DOI: 10.1109/TMTT.2017.2700275
    [3] GAO L, ZHANG X Y. High-selectivity dual-band bandpass filter using a quad-mode resonator with source-load coupling[J]. IEEE microwave and wireless components letters,2013,23(9):474-476. DOI: 10.1109/LMWC.2013.2274995
    [4] ZHANG S F, WANG L T, ZHAO S H, et al. Design of dual- /tri-band BPF with controllable bandwidth based on a quintuple-mode resonator[J]. Progress in electromagnetics research letters,2019,82:129-137.
    [5] GAO L, ZHANG X Y, HU B J, et al. Novel multi-stub loaded resonators and their applications to various bandpass filters[J]. IEEE transactions on microwave theory and techniques,2014,62(5):1162-1172. DOI: 10.1109/TMTT.2014.2314680
    [6] XU J X, ZHANG X Y. Single- and dual-band LTCC filtering switch with high isolation based on coupling control[J]. IEEE transactions on industrial electronics,2017,64(4):3137-3146. DOI: 10.1109/TIE.2016.2633534
    [7] CHEN L J, LIN K H. A compact multilayer dual-band bandpass filter using shunt architecture by LTCC process for global WLAN applications[J]. Microwave and optical technology letters,2016,58(10):2493-2496. DOI: 10.1002/mop.30074
    [8] MA Z L, MA K X, MOU S X, et al. Quasi-lumped-element filter based on substrate-integrated suspended line technology[J]. IEEE transactions on microwave theory and techniques,2017,65(12):5154-5161. DOI: 10.1109/TMTT.2017.2766625
    [9] CHU Y T, MA K X, WANG Y Q, et al. A self-packaged low-loss and compact SISL DBBPF with multiple TZs[J]. IEEE microwave and wireless components letters,2019,29(3):192-194. DOI: 10.1109/LMWC.2019.2895563
    [10] ZHANG W W, MA K X, ZHANG H, et al. Design of a compact SISL BPF with SEMCP for 5G Sub-6 GHz bands[J]. IEEE microwave and wireless components letters,2020,30(12):1121-1124. DOI: 10.1109/LMWC.2020.3030189
    [11] XU W, MA K X, DU C Y. Design and loss reduction of multiple-zeros dual-band bandpass filter using SISL[J]. IEEE transactions on circuits and systems II:express briefs,2021,68(4):1168-1172. DOI: 10.1109/TCSII.2020.3035038
    [12] WANG Y Q, YU M, MA K X. A compact low-pass filter using dielectric-filled capacitor on SISL platform[J]. IEEE microwave and wireless components letters,2021,31(1):21-24. DOI: 10.1109/LMWC.2020.3038705
    [13] YAN N N, MA K X, FU H P. A high-permittivity dielectric material-filled SISL antenna with cavity backing[J]. IEEE antennas and wireless propagation letters,2021,20(6):1033-1037. DOI: 10.1109/LAWP.2021.3069917
    [14] WANG H, CHU Q X. A compact dual-band filter with adjustable transmission zeros[C]//2009 European Microwave Conference. Rome, September 29−October 1, 2009: 117-120.
    [15] POZAR D M. Microwave engineering[M]. 2nd edition. New York: Wiley, 1998: 32.
    [16] MA K X, YEO K S, MA J G, et al. An ultra-compact hairpin band pass filter with additional zero points[J]. IEEE microwave and wireless components letters,2007,17(4):262-264. DOI: 10.1109/LMWC.2007.892955
    [17] MA K X, MA J G, YEO K S, et al. A compact size coupling controllable filter with separate electric and magnetic coupling paths[J]. IEEE transactions on microwave theory and techniques,2006,54(3):1113-1119. DOI: 10.1109/TMTT.2005.864118
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  589
  • HTML全文浏览量:  194
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-08
  • 网络出版日期:  2021-10-21

目录

    /

    返回文章
    返回