基于二氧化钒的自旋解耦多功能太赫兹超构表面

      Spin-decoupled multifunctional terahertz metasurface based on Vanadium Dioxide

      • 摘要: 圆偏振电磁波的动态精准调控在手性分子检测、量子信息处理与下一代通信技术等前沿领域具有重要应用价值。超构表面凭借其在亚波长尺度上灵活调控电磁波的能力,为实现微型化、集成化的功能器件提供了理想平台。然而,传统超构表面存在自旋锁定与功能固化的局限性,难以适应复杂场景下的多功能需求。为此,本文提出了一种基于相变材料二氧化钒的可切换多功能太赫兹超构表面。通过协同调控传输相位与几何相位,该超构表面在1 THz频点实现了对左旋与右旋圆偏振光的完全解耦:在常温下(介质态),可同时实现左旋圆偏振光的反射偏折与右旋圆偏振光的反射聚焦;在相变温度以上(金属态),则能够选择性吸收左旋圆偏振光并将右旋圆偏振光反射为贝塞尔光束。该超构表面的功能可通过入射偏振和温度进行动态切换,具备高效率、低串扰和结构紧凑等特点,为太赫兹波段的可重构电磁器件(如分束器、隔离器和成像系统等)提供了新的设计思路与实现途径。

         

        Abstract: The dynamic and precise control of circularly polarized electromagnetic waves is critical for cutting-edge fields such as chiral-molecule sensing, quantum information processing, and next-generation communications. Metasurfaces present an ideal platform for realizing miniaturized and integrated functional devices due to their sub-wavelength precision in manipulating electromagnetic waves. However, conventional metasurfaces suffer from spin-locking and functionality-freezing limitations, which prevent them from meeting the multi-functional demands of complex scenarios. To overcome these challenges, we propose a switchable, multi-functional terahertz metasurface based on the phase-change material vanadium dioxide (VO₂). By synergistically engineering the propagation phase and the Pancharatnam-Berry phase, the device achieves complete decoupling of left- and right-circularly polarized light (LCP/RCP) at 1 THz: at room temperature (insulating state), it simultaneously deflects reflected LCP and focuses reflected RCP; above the phase-transition temperature (metallic state), it selectively absorbs LCP while converting reflected RCP into a Bessel beam. The metasurface’s functionality can be dynamically reconfigured on demand by varying the incident polarization and temperature. Featuring high efficiency, low crosstalk, and a compact footprint, this design provides a new design strategy and a practical pathway for developing reconfigurable terahertz devices such as beam splitters, isolators, and imaging systems.

         

      /

      返回文章
      返回