面向雷达智能感知的语义电磁散射建模

      Semantic Electromagnetic Scattering Modeling for Radar Intelligent Perception

      • 摘要: 雷达图像解译是提升雷达卫星应用效益和支撑未来无人智能平台的关键技术之一。微波视觉是基于电磁数据认识物理世界的感知逆问题,其核心任务就是如何根据物理规律建模来求解从微波雷达观测图像中反推语义信息的问题。微波视觉的正问题是表征建模电磁波与真实物理世界相互作用机理的"微波图形学",发展适用于感知逆问题的电磁散射建模。本文提出发展面向雷达智能感知的语义电磁散射建模,以目标语义为中心,引入多样性随机建模,由追求单一样本的精确一致转变为追求样本分布的一致性。本文阐述了语义电磁散射建模的问题背景、基本属性和关键任务,并在语义电磁散射基元字典和语义电磁散射表征树两个层面展开介绍了若干进展和技术途径,最后简要介绍作者团队前期开展的相关研究进展。

         

        Abstract: Radar image interpretation is one of the key technologies for promoting wide applications of radar satellites and supporting future unmanned intelligent platforms. Microwave vision, as a perceptual inverse problem for understanding the physical world through electromagnetic data, focuses on deriving semantic information from microwave radar images according to physics principles. Its forward problem involves "microwave graphics" that characterize the interaction mechanisms between electromagnetic waves and the physical world, aiming to develop electromagnetic scattering modeling suitable for perceptual inverse problems. This paper proposes a semantic electromagnetic scattering modeling framework for radar intelligent perception, which centers on target semantics and introduces diversity-oriented randomness modeling. This approach shifts the focus from pursuing one-to-one consistency of individual samples to ensuring distributional consistency across sample populations. This paper elaborates on the problem background, fundamental properties, and key tasks of semantic electromagnetic scattering modeling, presenting technical roadmaps at two levels: the primitive scatterer dictionary and the semantic representation tree. Finally, some relevant research progresses of the authors are briefly introduced.

         

      /

      返回文章
      返回