光学透明雷达/红外兼容隐身结构设计

      Design of an optically transparent radar/infrared compatible stealth structure

      • 摘要: 为了满足现代军事装备对多功能隐身材料的迫切需求,本文提出了一种光学透明雷达/红外兼容隐身超材料。该结构由红外屏蔽层(Infrared Shielding Layer, IR-SL)、聚甲基丙烯酸甲酯(Polymethyl Methacrylate, PMMA)匹配层和雷达吸波屏(Radar Absorbing Screen, RAS)组成。IR-SL采用氧化铟锡(Indium Tin Oxide, ITO)方形贴片阵列结构,在显著降低红外发射率的同时,保证了雷达波能够充分透射至下层结构;采用微米级金属网格结构设计RAS的损耗层和反射层,其中损耗层采用差异化线宽的复合网格结构,在保持高透光率的同时,提升了吸波结构的设计自由度。通过集成光学透明的功能层,该结构在垂直入射情况下实现了6.11 - 16.24 GHz频带内雷达波的高效吸收(吸收率 > 90%)和低红外发射率(ε = 0.31)的协同优化。基于加工制备的测试样件,实验验证了其可见光透明、宽带雷达吸波和低红外发射率等特性,为飞行器座舱、光电传感器窗口等特殊功能部件提供了新的解决方案。

         

        Abstract: To address the urgent demand for multifunctional stealth materials in modern military equipment, this paper proposes an optically transparent metamaterial with radar/infrared compatible stealth capabilities. The structure is composed of an infrared shielding layer (IR-SL), a polymethyl methacrylate (PMMA) matching layer, and a radar absorbing screen (RAS). The IR-SL consists of an array of indium tin oxide (ITO) square patches, which effectively reduces infrared emissivity while allowing radar waves to transmit sufficiently to the underlying layer. The RAS incorporates a lossy layer and a reflective layer constructed from micron-scale metal grid structures. The lossy layer employs a composite grid design with differentiated line widths, which enhances the design flexibility of the absorptive structure while maintaining high optical transmittance. By integrating optically transparent functional layers, the proposed design achieves synergistic optimization of high-efficiency absorption (absorptivity > 90%) under normal incidence within the 6.11 - 16.24 GHz frequency band and low infrared emissivity (ε = 0.31). Experimental validation based on fabricated prototypes confirms its characteristics of optical transparency, broadband radar absorption, and low infrared emissivity, offering a novel solution for special functional components such as aircraft canopies and optoelectronic sensor windows.

         

      /

      返回文章
      返回