目标微动参数估计的曲线跟踪算法

      Curve tracking based parameter estimation of micromotion

      • 摘要: 对于包含多散射点的微动部件来说,其微动参数估计等价于多分量非平稳信号的瞬时频率估计.针对此问题,提出一种基于曲线跟踪算法的目标微动参数估计方法.该算法首先在时频域通过最近邻数据关联算法分离各分量信号的时频曲线,然后,采用扩展Kalman滤波器对各时频曲线进行平滑滤波,并基于平滑后的时频曲线估计目标微动参数.基于电磁计算数据的仿真结果验证了该算法的有效性.

         

        Abstract: Considering the micromotion structure comprised of multi scatters, its micromotion parameter estimation is equivalent to the instantaneous frequency estimation of multicomponent nonstationary signal. Aiming at this problem, a novel method based on curve tracking algorithm is proposed to estimate the parameter of micromotion. First, the proposed method separates the timefrequency curves successfully in timefrequency domain with the nearest neighbor data association (NNDA) algorithm, then the timefrequency curve of each component signal is smoothed by the extended Kalman filter, and the parameter of micromotion can be estimated with the smoothed timefrequency curves. In the simulation, electromagnetic data is used to verify the validity of the proposed algorithm.

         

      /

      返回文章
      返回