深度学习辅助的编码超表面阵列智能设计

      Deep Learning-Assisted Intelligent Design of Coding Metasurface Arrays

      • 摘要: 针对卫星地面协同通信、低空经济、智慧城市等新兴复杂应用场景下的通信需求,提出了一种用于编码超表面快速波束赋形的卷积神经网络(convolutional neural network,CNN),以实现直接的编码超表面阵列逆向设计过程。该卷积神经网络主要基于VGG网络结构,通过引入通道注意力机制以进一步提高网络预测精度。通过相位补偿和多种群遗传算法收集数据集用于训练。训练后的网络能够在几十毫秒内计算单波束和双波束的超表面编码矩阵,并且相比于现有基准网络在训练收敛速度和预测精确度上都有所提升。该网络极大提高了大规模超表面编码的设计效率,为快速实时的编码超表面控制提供了一种可行的解决方案。

         

        Abstract: To address the communication demands in complex scenarios such as satellite-terrestrial collaborative communication, low-altitude economy, and smart cities, this study proposes a convolutional neural network (CNN) for fast beamforming with coding metasurface arrays, enabling a direct inverse design process. The CNN is primarily based on the VGG network architecture, incorporating channel attention mechanisms to further enhance its prediction accuracy. Dataset is collected through phase compensation and multi-population genetic algorithm (MPGA). The trained network can generate coding matrices for both single-beam and dual-beam within milliseconds, demonstrating improvement in both training convergence speed and prediction accuracy compared to existing benchmark networks.This network significantly improves the design efficiency of large-scale coding metasurface arrays, offering a feasible solution for fast and real-time control of coding metasurface arrays.

         

      /

      返回文章
      返回