广义微波网络驱动的超表面物理信息神经算子代理模型

      Generalized Microwave Network-Driven Physics-Informed Neural Operator Surrogate Model for Metasurfaces

      • 摘要: 为解决可重构电磁超表面优化设计中的计算瓶颈,实现从全波仿真向高效智能算子推理的转变,本文提出了广义微波网络建模驱动的超表面物理信息神经算子代理模型。首先提出基于广义微波网络理论的统一近/远场物理建模方法,通过散射参数矩阵、有效激励和角谱传播实现精确场预测;然后构建物理引导傅里叶神经算子智能替代框架,学习端口配置到场分布的算子映射关系,嵌入角谱传播过程作为归纳偏置并添加物理约束确保物理合理性。基于20×20 PIN二极管超表面8焦点聚焦的初步验证表明,所提广义微波网络方法与HFSS全波仿真一致性高,可以为AI训练提供可靠数据基础;在本文采用的算例下,所训练的傅里叶神经算子智能替代算子相比HFSS实现了4万倍的存储缩减和200万倍的计算加速,近场预测误差低于3%,功率守恒误差小于5%。实验结果表明,广义微波网络理论能够通过有效激励和端口-场分解实现了复杂电磁过程的可学习算子表示,在此基础上训练的傅里叶神经算子通过频域谱卷积可实现算子映射的高效近似,因此本文提出的框架适用于超表面实时优化场景。

         

        Abstract: To address computational bottlenecks in metasurface optimization, we proposed a GMN-driven intelligent operator surrogate framework. We developed a unified near- and far-field model based on GMN that predicted fields via S-parameter matrices, effective excitations, and angular-spectrum propagation. We then built a physics-guided Fourier Neural Operator (FNO) surrogate to learn the operator mapping from port configurations to field distributions, embedding angular-spectrum propagation and physical constraints. On a 20×20 PIN-diode metasurface with eight-spot focusing, GMN agreed with HFSS and provided reliable training data. The trained FNO now achieves a 40,000× memory reduction and a 2000,000× speedup over HFSS, with near-field errors below 3% and power-conservation error below 5%. These results indicate that GMN enables a learnable operator representation and that FNO provides efficient spectral-convolution approximations suitable for real-time metasurface optimization.

         

      /

      返回文章
      返回