• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)
微信公众号

微信公众号

基于信号特征谱的地面运动目标分类

李彦兵, 杜兰, 刘宏伟, 徐丹蕾, 关永胜

李彦兵, 杜兰, 刘宏伟, 徐丹蕾, 关永胜. 基于信号特征谱的地面运动目标分类[J]. 电波科学学报, 2011, 26(4): 641-648.
引用本文: 李彦兵, 杜兰, 刘宏伟, 徐丹蕾, 关永胜. 基于信号特征谱的地面运动目标分类[J]. 电波科学学报, 2011, 26(4): 641-648.
LI Yan-bing, DU Lan, LIU Hong-wei, XU Dan-lei, GUAN Yong-sheng. Moving ground targets classification based on eigenvalue sequence of echo signal[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2011, 26(4): 641-648.
Citation: LI Yan-bing, DU Lan, LIU Hong-wei, XU Dan-lei, GUAN Yong-sheng. Moving ground targets classification based on eigenvalue sequence of echo signal[J]. CHINESE JOURNAL OF RADIO SCIENCE, 2011, 26(4): 641-648.

基于信号特征谱的地面运动目标分类

详细信息
    作者简介:

    李彦兵(1982-),男,陕西人,博士生,研究方向为雷达自动目标识别和雷达信号处理理论;杜兰(1980-),女,陕西人,副教授,博士生导师,博士,研究方向为统计信号处理、雷达信号处理、机器学习及其在雷达目标检测与识别方面的应用;刘宏伟(1971-),男,河南人,教授,博士生导师,雷达信号处理国家重点实验室主任,博士,研究方向为宽带雷达信号处理、MIMO雷达、雷达目标识别、自适应信号处理、认知雷达等。

    通信作者:

    李彦兵 E-mail:xidianlyb@163.com

  • 中图分类号: TN959.1+7

Moving ground targets classification based on eigenvalue sequence of echo signal

  • 摘要: 研究低分辨、短驻留时间下地面运动车辆目标分类问题。根据微多普勒效应,使用多散射中心模型描述轮式和履带式车辆的微动部件雷达回波。指出目标回波中的谐波数是区分轮式和履带式车辆的一个稳定特征,由此提出一种基于目标回波信号特征谱的特征提取方法。该方法能够描述目标回波中的谐波信息,同时对于平动速度变化所带来的影响具有稳健性。使用仿真数据的实验结果验证了该方法的有效性,使用实测数据的实验结果表明:该方法在分类性能上优于基于主分量分析的分类方法。
    Abstract: This paper studieds the moving ground targets classification under the circumstances of low resolution and low dwell time. It establishes the echo signal model of micro-motion part using multi-scattering centre model based on micro-Doppler effect, which demonstrated that the number of harmonics contained in the echo signal is a stable feature to distinguish tracked vehicle and wheeled vehicle. Thus a new feature extraction method based on the eigenvalue sequence of the echo signal is proposed, which depicts the harmonic information of the echo signal, and is robust to the change of bulk velocity. The experimental results based on simulated data show the effectiveness of the proposed method and those based on measured data via Support Vector Machine (SVM) show the proposed method outperforms the principle component analysis (PCA) based method in classification performance.
  • 高红卫, 谢良贵, 文树梁, 等. 基于微多普勒特征的真假目标雷达识别研究[J]. 电波科学学报, 2008, 23(4):775-780. GAO Hongwei, XIE Lianggui, WEN Shuliang, et al. Research on radar target identification of warhead and decoys based on micro-Doppler signature[J]. Chinese Journal of Radio Science, 2008, 23(4):775-780. (in Chinese)
    杨立明, 曹祥玉. 直升机旋翼对回波的调制效应分析[J]. 电波科学学报, 2002, 17(1):93-96. YANG Liming, CAO Xiangyu. Analysis of the backscattered wave from a helicopter rotor[J]. Chinese Journal of Radio Science, 2002, 17(1):93-96. (in Chinese)
    童创明, 王光明, 张晨新, 等. 喷气发动机的JEM效应调制谱分析[J]. 电波科学学报, 1999, 14(2):136-143. TONG Chuangming, WANG Guangming, ZHANG Chenxin, et al. Analysis of J.E.M effect modulation spectra of jet engine[J]. Chinese Journal of Radio Science, 1999, 14(2):136-143. (in Chinese)
    CHEN V C, LI F, HO S S, et al. Micro-Doppler effect in radar:phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic System, 2006, 42(1):2-21.
    THAYAPARAN T, ABROL S, RISEBOROUGH E, et al. Analysis of radar micro-Doppler signatures from experimental helicopter and human data[J]. IET Radar Sonar Navigation, 2007, 1(4):289-299.
    KIM Y, LING H. Human activity classification based on micro-Doppler signatures using a support vector machine[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(5):1328-1337.
    STOVE A G. A Doppler-based target classifier using linear discriminants and principal components[C]//RTO SET Symposium on "Target Identification and Recognition Using RF Systems". Oslo, Norway, 2004:1-12.
    TSAO J, STEINBERG B D. Reduction of sidelobe and speckle artifacts in microwave imaging:the CLEAN technique[J]. IEEE Transactions on Antennas and Propagation, 1988, 36(4):543-556.
    陈凤, 刘宏伟, 杜兰, 等. 基于特征谱散布特征的低分辨雷达目标分类方法[J]. 中国科学:信息科学, 2010, 2(4):624-636.
    BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2):121-167.
计量
  • 文章访问数:  79
  • HTML全文浏览量:  13
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-17
  • 网络出版日期:  2020-12-30
  • 发布日期:  2011-08-30

目录

    /

    返回文章
    返回